Temperaturni grafikon 105 70. Smanjenje snage sistema grijanja smanjenjem ventilacije unutrašnjeg zraka u uslovima povećane potrošnje vode iz mreže

Svaka kompanija za upravljanje nastoji postići ekonomične troškove grijanja stambene zgrade. Osim toga, stanovnici privatnih kuća pokušavaju doći. To se može postići ako se napravi temperaturni graf, koji će odražavati ovisnost topline koju proizvode nosači od vremenskim uvjetima na ulici. Ispravna upotreba Ovi podaci omogućavaju optimalnu distribuciju tople vode i grijanja do potrošača.

Šta je temperaturni grafikon

Isti način rada ne treba održavati u rashladnoj tečnosti, jer se van stana temperatura menja. Ona je ta koja se treba voditi i, ovisno o njoj, mijenjati temperaturu vode u grijaćim objektima. Ovisnost temperature rashladne tekućine o vanjska temperatura vazduh sastavljaju tehnolozi. Za njegovu kompilaciju uzimaju se u obzir vrijednosti rashladne tekućine i vanjske temperature zraka.

Prilikom projektiranja bilo koje zgrade moraju se uzeti u obzir veličina opreme za grijanje koja se isporučuje u njoj, dimenzije same zgrade i poprečni presjeci cijevi. U visokoj zgradi, stanovnici ne mogu samostalno povećati ili smanjiti temperaturu, jer se ona napaja iz kotlovnice. Podešavanje načina rada uvijek se vrši uzimajući u obzir temperaturni grafikon rashladne tekućine. Uzima se u obzir i sama temperaturna shema - ako povratna cijev opskrbljuje vodu s temperaturom iznad 70 ° C, tada će protok rashladne tekućine biti prekomjeran, ali ako je mnogo niži, postoji nedostatak.

Bitan! temperaturni graf sastavljen je na način da se pri bilo kojoj temperaturi vanjskog zraka u stanovima održava stabilan optimalni nivo grijanja na 22 °C. Zahvaljujući njemu, ni najteži mrazevi nisu strašni, jer će sistemi grijanja biti spremni za njih. Ako je vani -15 ° C, dovoljno je pratiti vrijednost indikatora kako biste saznali kolika će biti temperatura vode u sistemu grijanja u tom trenutku. Što je spoljašnje vreme teže, to bi voda unutar sistema trebalo da bude toplija.

Ali nivo grijanja koji se održava u zatvorenom prostoru ne ovisi samo o rashladnoj tekućini:

  • Vanjska temperatura;
  • Prisutnost i snaga vjetra - njegovi jaki udari značajno utiču na gubitak topline;
  • Toplotna izolacija - kvalitetno obrađeni konstruktivni dijelovi zgrade pomažu u održavanju topline u zgradi. To se radi ne samo tokom izgradnje kuće, već i zasebno na zahtjev vlasnika.

Tablica temperature nosača topline prema vanjskoj temperaturi

Da bi se izračunao optimalni temperaturni režim, potrebno je uzeti u obzir karakteristike koje imaju uređaji za grijanje - baterije i radijatori. Najvažnije je izračunati njihovu specifičnu snagu, ona će biti izražena u W / cm 2. To će najdirektnije utjecati na prijenos topline sa zagrijane vode na zagrijani zrak u prostoriji. Važno je uzeti u obzir njihovu površinsku snagu i koeficijent otpora koji je dostupan za prozorske otvore i vanjske zidove.

Nakon što se uzmu u obzir sve vrijednosti, potrebno je izračunati razliku između temperature u dvije cijevi - na ulazu u kuću i na izlazu iz nje. Što je veća vrijednost u ulaznoj cijevi, to je veća u povratnoj cijevi. Shodno tome, unutrašnje grijanje će se povećati ispod ovih vrijednosti.

Vanjsko vrijeme, Sna ulazu u zgradu, CPovratna cijev, C
+10 30 25
+5 44 37
0 57 46
-5 70 54
-10 83 62
-15 95 70

Pravilna upotreba rashladnog sredstva podrazumijeva pokušaje stanovnika kuće da smanje temperaturnu razliku između ulazne i izlazne cijevi. To može biti građevinski radovi za izolaciju zidova spolja ili toplotnu izolaciju spoljnih toplovodnih cevi, izolaciju plafona iznad hladne garaže ili podruma, izolaciju unutrašnjosti kuće ili više radova koji se izvode istovremeno.

Grijanje u radijatoru također mora biti u skladu sa standardima. U sistemima centralnog grijanja obično varira od 70 C do 90 C, u zavisnosti od temperature vanjskog zraka. Važno je uzeti u obzir da u kutne sobe ne može biti manja od 20 C, iako je u ostalim prostorijama stana dozvoljeno da se spusti na 18 C. Ako temperatura napolju padne na -30 C, onda grejanje u prostorijama treba da poraste za 2 C. U ostalim prostorijama, temperatura također treba povećati, s tim da u prostorijama različite namjene može biti različita. Ako je u sobi dijete, onda može biti od 18 C do 23 C. U ostavama i hodnicima grijanje može varirati od 12 C do 18 C.

Važno je napomenuti! uzeti u obzir prosječne dnevne temperature- ako je temperatura oko -15 C noću, a -5 C tokom dana, tada će se smatrati vrijednošću od -10 C. Ako je noću bila oko -5 C, a na danju porastao je na +5 C, tada se zagrijavanje uzima u obzir na vrijednosti od 0 C.

Raspored dovoda tople vode u stan

Da bi potrošaču isporučile optimalnu toplu vodu, CHP postrojenja moraju je slati što topliju. Toplovodi su uvijek toliko dugi da se njihova dužina može mjeriti kilometrima, a dužina stanova se mjeri hiljadama. kvadratnih metara. Bez obzira na toplinsku izolaciju cijevi, toplina se gubi na putu do korisnika. Zbog toga je potrebno što više zagrijati vodu.


Međutim, voda se ne može zagrijati na više od tačke ključanja. Stoga je pronađeno rješenje - povećati pritisak.

Važno je znati! Kako se diže, tačka ključanja vode se pomiče prema gore. Kao rezultat toga, do potrošača dolazi zaista vruće. Sa porastom pritiska ne trpe podizači, mikseri i slavine, a svi stanovi do 16. sprata mogu se obezbediti toplom vodom bez dodatnih pumpi. U toplovodu voda obično sadrži 7-8 atmosfera, gornja granica obično ima 150 sa marginom.

izgleda ovako:

Temperatura ključanjaPritisak
100 1
110 1,5
119 2
127 2,5
132 3
142 4
151 5
158 6
164 7
169 8

Inings vruća voda in zimsko vrijeme godine moraju biti kontinuirane. Izuzetak od ovog pravila su nesreće na opskrbi toplinom. Topla voda se može isključiti samo ljetni period za preventivni rad. Takav rad se izvodi iu zatvorenim sistemima grijanja iu otvorenim sistemima.

Svaki sistem grijanja ima određene karakteristike. To uključuje snagu, prijenos topline i rad na temperaturi. Oni određuju efikasnost rada, direktno utičući na udobnost života u kući. Kako odabrati pravi temperaturni grafikon i način grijanja, njegov proračun?

Izrada temperaturnog grafikona

Temperaturni raspored sistema grijanja izračunava se prema nekoliko parametara. Od odabranog načina rada ovisi ne samo stupanj grijanja prostora, već i brzina protoka rashladne tekućine. To također utiče na tekuće troškove održavanja grijanja.

Sastavljen raspored temperaturni režim grijanje ovisi o nekoliko parametara. Glavni je nivo grijanja vode u mreži. On se pak sastoji od sljedećih karakteristika:

  • Temperatura u dovodnim i povratnim cjevovodima. Mjerenja se vrše u odgovarajućim mlaznicama kotla;
  • Karakteristike stepena zagrevanja vazduha u zatvorenom i na otvorenom.

Ispravan proračun grafika temperature grijanja počinje proračunom razlike između temperature tople vode u direktnoj i dovodnoj cijevi. Ova vrijednost ima sljedeću notaciju:

∆T=Tin-Tob

Gdje Tin- temperaturu vode u dovodnom vodu, Tob- stepen zagrijavanja vode u povratnoj cijevi.

Da biste povećali prijenos topline sistema grijanja, potrebno je povećati prvu vrijednost. Da bi se smanjio protok rashladne tečnosti, ∆t se mora svesti na minimum. Upravo je to glavna poteškoća, jer raspored temperature kotla za grijanje direktno ovisi o vanjskim faktorima - gubicima topline u zgradi, vanjskom zraku.

Za optimizaciju snage grijanja potrebno je napraviti toplinsku izolaciju vanjskih zidova kuće. To će smanjiti gubitke topline i potrošnju energije.

Proračun temperature

Za određivanje optimalnog temperaturnog režima potrebno je uzeti u obzir karakteristike komponenti grijanja - radijatora i baterija. Konkretno, specifična snaga (W / cm²). To će direktno utjecati na prijenos topline zagrijane vode na zrak u prostoriju.

Također je potrebno napraviti niz preliminarnih proračuna. Ovo uzima u obzir karakteristike kuće i uređaja za grijanje:

  • Koeficijent otpora prijenosa topline vanjskih zidova i prozorske konstrukcije. Mora biti najmanje 3,35 m² * C / W. Zavisi od klimatskih karakteristika regije;
  • Površinska snaga radijatora.

Temperaturna kriva sistema grijanja direktno ovisi o ovim parametrima. Za proračun toplinskih gubitaka kuće potrebno je znati debljinu vanjskih zidova i građevinskog materijala. Proračun površinske snage baterija vrši se prema sljedećoj formuli:

Rud=P/Činjenica

Gdje R– maksimalna snaga, W, činjenica– površina radijatora, cm².

Prema dobijenim podacima sastavlja se temperaturni režim grijanja i raspored prijenosa topline u zavisnosti od vanjske temperature.

Za pravovremenu promjenu parametara grijanja instaliran je regulator temperature grijanja. Ovaj uređaj se povezuje na vanjske i unutrašnje termometre. U zavisnosti od trenutnih indikatora, prilagođava se rad kotla ili količina dotoka rashladne tečnosti u radijatore.

Sedmični programator je optimalni regulator temperature za grijanje. Uz njegovu pomoć možete maksimalno automatizirati rad cijelog sistema.

Centralno grijanje

Za daljinsko grijanje temperaturni režim sistema grijanja ovisi o karakteristikama sistema. Trenutno postoji nekoliko vrsta parametara rashladne tekućine koja se isporučuje potrošačima:

  • 150°C/70°C. Za normalizaciju temperature vode uz pomoć elevatorske jedinice, miješa se s ohlađenim potokom. U ovom slučaju moguće je izraditi individualni temperaturni raspored za kotlovnicu za grijanje za određenu kuću;
  • 90°C/70°C. Tipično je za male privatne sisteme grijanja dizajnirane za grijanje nekoliko stambene zgrade. U tom slučaju ne možete instalirati jedinicu za miješanje.

Odgovornost je komunalnih preduzeća da izračunaju temperaturni raspored grijanja i kontrolišu njegove parametre. Istovremeno, stepen zagrijavanja zraka u stambenim prostorijama trebao bi biti na nivou od + 22 ° C. Za nestambene, ova brojka je nešto niža - + 16 ° S.

Za centralizovani sistem potrebno je napraviti ispravan temperaturni raspored za grijanje kotlarnice kako bi se osigurala optimalna ugodna temperatura u apartmanima. Glavni problem je nedostatak povratne informacije- nemoguće je podesiti parametre nosača toplote u zavisnosti od stepena zagrevanja vazduha u svakom stanu. Zbog toga se sastavlja temperaturni raspored sistema grijanja.

Kopiju plana grijanja možete zatražiti od Društvo za upravljanje. Pomoću njega možete kontrolirati kvalitetu pruženih usluga.

Sistem grijanja

Često nije potrebno praviti slične proračune za autonomne sisteme grijanja privatne kuće. Ako shema predviđa senzore unutrašnje i vanjske temperature, informacije o njima bit će poslane kontrolnoj jedinici kotla.

Stoga se, kako bi se smanjila potrošnja energije, najčešće odabire niskotemperaturni način grijanja. Odlikuje se relativno niskim zagrevanjem vode (do +70°C) i visokim stepenom cirkulacije vode. To je neophodno za ravnomjernu raspodjelu topline na sve grijače.

Za implementaciju takvog temperaturnog režima sistema grijanja moraju biti ispunjeni sljedeći uslovi:

  • Minimalni gubici toplote u kući. Međutim, ne treba zaboraviti na normalnu izmjenu zraka - ventilacija je neophodna;
  • Visoka toplotna snaga radijatora;
  • Instalacija automatski regulatori temperature grijanja.

Ukoliko postoji potreba da se izvrši ispravan proračun sistema, preporučuje se upotreba posebnih softverskih sistema. Previše je faktora koje treba uzeti u obzir za samoproračun. Ali uz njihovu pomoć možete nacrtati približne temperaturne grafikone za načine grijanja.


Međutim, treba imati na umu da se tačan proračun rasporeda temperature dovoda topline radi za svaki sistem pojedinačno. U tablicama su prikazane preporučene vrijednosti za stepen zagrijavanja rashladne tekućine u dovodnim i povratnim cijevima, ovisno o vanjskoj temperaturi. Prilikom izvođenja proračuna nisu uzete u obzir karakteristike zgrade, klimatske karakteristike regije. Ali čak i tako, oni se mogu koristiti kao osnova za kreiranje temperaturnog grafikona za sistem grijanja.

Maksimalno opterećenje sistema ne bi trebalo da utiče na kvalitet kotla. Stoga se preporučuje da ga kupite s rezervom snage od 15-20%.

Čak i najprecizniji temperaturni grafikon kotlovnice za grijanje doživjet će odstupanja u izračunatim i stvarnim podacima tokom rada. To je zbog posebnosti rada sistema. Koji faktori mogu uticati na trenutni temperaturni režim opskrbe toplinom?

  • Zagađenje cjevovoda i radijatora. Da biste to izbjegli, potrebno je periodično čišćenje sistema grijanja;
  • Neispravan rad regulacionog i zaporni ventili. Obavezno provjerite performanse svih komponenti;
  • Kršenje načina rada kotla - nagli skokovi temperature kao rezultat - pritisak.

Održavanje optimalnog temperaturnog režima sistema moguće je samo uz pravilan izbor njegovih komponenti. Za to treba uzeti u obzir njihova operativna i tehnička svojstva.

Grijanje baterije može se podesiti pomoću termostata, čiji princip rada možete pronaći u videu:

Sa početkom grejne sezone, spoljna temperatura vazduha počinje da pada, a da bi se održala ugodna temperatura u prostoriji (18-22C), uključuje se sistem grejanja. Sa smanjenjem vanjske temperature povećavaju se gubici topline u prostorijama, što dovodi do potrebe za povećanjem temperature rashladne tekućine u mreži grijanja i sistemu grijanja. To je dovelo do kreiranja temperaturnog grafikona. Grafikon temperature - predstavlja zavisnost temperature smeše (nosač toplote koji ide u sistem grejanja)/direktno mrežna voda i povratne vode iz mreže vanjske temperature (tj. okruženje). Postoje 2 vrste temperaturnih grafikona:

  • Temperaturni grafikon za kontrolu kvaliteta sistema grijanja
  • Obično je to 95/70 i 105/70 - ovisno o dizajnerskom rješenju.

Ovisnost temperature rashladnog sredstva od temperature vanjskog zraka

Zaposleni u sistemu centralnog grijanja za stambene prostore razvijaju poseban temperaturni raspored, koji ovisi o vremenskim pokazateljima, klimatskim karakteristikama regije. Grafikon temperature može se razlikovati u različitim dijelovima naselja, može se promijeniti i tokom modernizacije toplovodnih mreža. Sadržaj

  • 1 Ovisnost temperature rashladne tekućine o vremenu
  • 2 Kako se reguliše toplota u sistemu grejanja
  • 3 razloga za korištenje temperaturnog grafikona
  • 4 Karakteristike proračuna unutrašnja temperatura in različite sobe
  • 5 Zašto potrošač mora znati norme za isporuku rashladnog sredstva?
  • 6 Koristan video

Ovisnost temperature rashladnog sredstva od vremenskih prilika U mreži grijanja se sastavlja raspored prema jednostavan princip- što je vanjska temperatura niža, rashladna tekućina bi trebala biti viša.

Energy Blog

Ako je ovaj parametar manji od normalnog, to znači da se prostorija ne zagrijava pravilno. Višak ukazuje na suprotno - temperatura u stanovima je previsoka. Raspored temperature za privatnu kuću Praksa sastavljanja sličnog rasporeda za autonomno grijanje nije mnogo razvijeno.

Pažnja

To je zbog njegove fundamentalne razlike od centraliziranog. Moguće je kontrolisati temperaturu vode u cijevima u ručnom i automatskom načinu rada. Ako je prilikom projektovanja i praktične implementacije uzeta u obzir ugradnja senzora za automatsku kontrolu rada kotla i termostata u svakoj prostoriji, tada hitna potreba u proračunu neće biti grafa temperature.


Ali za izračunavanje budućih troškova u zavisnosti od vremenskih uslova, to će biti neophodno.

Temperaturni grafikon sistema grijanja

Bitan

Ograničavajući faktor je tačka ključanja; međutim, kako pritisak raste, on se pomera prema višoj temperaturi: Pritisak, atmosfere Tačka ključanja, stepeni Celzijusa 1100 1,5 110 2119 2,5 127 3132 4142 5151 6158 7164 8169 Tipični dovodni vod pritiska 7-8 atmosfere za grejanje. Ova vrijednost, čak i uzimajući u obzir gubitke pritiska tokom transporta, omogućava vam da počnete sistem grijanja u zgradama do 16 spratova bez dodatnih pumpi. Istovremeno je siguran za trase, uspone i dovode, crijeva miješalica i druge elemente sistema grijanja i tople vode.


Unutar fleksibilnih crijeva miješalice tlak je isti kao i u grijanju. Uz određenu marginu, gornja granica temperature dovoda uzima se jednakom 150 stepeni. Najtipičnije temperaturne krivulje grijanja za grijanje su u rasponu od 150/70 - 105/70 (temperatura dovoda i povrata).

Temperatura medija za grijanje ovisno o vanjskoj temperaturi

Ispravan izračun individualnog temperaturnog grafikona je složena matematička shema koja uzima u obzir sve moguće pokazatelje. Međutim, da bi se olakšao zadatak, postoje gotove tablice s indikatorima. Ispod su primjeri najčešćih načina rada opreme za grijanje.
Kao početni uslovi uzeti su sljedeći ulazni podaci:

  • Minimalna vanjska temperatura zraka - 30°S
  • Optimalna temperatura prostorije je +22°C.

Na osnovu ovih podataka izrađeni su rasporedi za sljedeće vrste sistema grijanja. Vrijedno je zapamtiti da ovi podaci ne uzimaju u obzir karakteristike dizajna sistema grijanja.

Tabela temperature grijanja

Temperatura vode u mreži u dovodnim cevovodima, u skladu sa temperaturnim rasporedom odobrenim za sistem za snabdevanje toplotom, mora se podesiti prema prosečnoj spoljnoj temperaturi vazduha u periodu od 12 do 24 sata, koju određuje toplotna mreža. dispečer, zavisno od dužine mreže, klimatskim uslovima i drugi faktori. Temperaturni raspored se izrađuje za svaki grad, ovisno o lokalnim uvjetima. Jasno definira kolika bi trebala biti temperatura mrežne vode u toplinskoj mreži pri određenoj vanjskoj temperaturi.


Na primjer, na -35 ° temperatura rashladne tekućine treba biti 130/70. Prva znamenka određuje temperaturu u dovodnoj cijevi, druga - u povratu. Upravitelj toplinske mreže postavlja ovu temperaturu za sve izvore topline (CHP, kotlovnice). Pravila dozvoljavaju odstupanja od zadatih parametara: 4.11.1.

Tabela temperature za sezonu grijanja

U pravilu se koriste sljedeći temperaturni grafikoni: 150/70, 130/70, 115/70, 105/70, 95/70. Raspored se bira u zavisnosti od specifičnih lokalnih uslova. Sistemi grijanja kuća rade po rasporedu 105/70 i 95/70.


Po redovima vožnje 150, 130 i 115/70 saobraćaju magistralne linije grejna mreža. Pogledajmo primjer kako koristiti grafikon. Pretpostavimo da je temperatura napolju minus 10 stepeni. Mreže grijanja rade prema temperaturnom rasporedu od 130/70, što znači da na -10 °C temperatura rashladne tekućine u dovodnom cjevovodu toplinske mreže treba biti 85,6 stepeni, u dovodnom cjevovodu sistema grijanja - 70,8 ° C sa rasporedom 105/70 ili 65,3°C na grafikonu 95/70.
Temperatura vode nakon sistema grijanja treba biti 51,7 °C. U pravilu se vrijednosti temperature u dovodnom cjevovodu toplinskih mreža zaokružuju prilikom postavljanja izvora topline.

Temperaturni grafikon sistema grijanja - postupak proračuna i gotove tabele

Brojila se moraju provjeravati jednom godišnje. Moderna građevinske kompanije može povećati troškove stanovanja korištenjem skupih tehnologija za uštedu energije u izgradnji stambene zgrade. Uprkos promeni građevinske tehnologije, upotreba novih materijala za izolaciju zidova i drugih površina zgrade, usklađenost s temperaturom rashladnog sredstva u sistemu grijanja je najbolji način za održavanje ugodnih uslova života. Značajke izračunavanja unutrašnje temperature u različitim prostorijama Pravila predviđaju održavanje temperature za stan na 18˚S, ali u ovom pitanju postoje neke nijanse.

Temperaturni grafikon sistema grijanja: upoznavanje sa načinom rada sistema grijanja

C. Cijena snižavanja temperature dovoda je povećanje broja radijatorskih odjeljaka: u sjevernim krajevima zemlje prostorije grupa u vrtićima su bukvalno okružene njima. Duž zidova proteže se niz radijatora za grijanje.

  • Delta temperature između dovodnog i povratnog cjevovoda, iz očiglednih razloga, trebala bi biti što manja - inače će temperatura baterija u zgradi znatno varirati. To podrazumijeva brzu cirkulaciju rashladne tekućine, međutim, prebrza cirkulacija kroz sistem grijanja kuće će dovesti do toga da se povratna voda vrati na trasu s previsokim visoke temperature, što je zbog serije tehnička ograničenja u CHP rad je neprihvatljiv.

Problem se rješava ugradnjom jednog ili više liftova u svaku kuću, u kojima se povratni tok miješa sa strujom vode iz dovodnog cjevovoda.

temperaturni graf

Tabela za izračunavanje grafa temperature u MS Excel-u Da bi Excel mogao izračunati i izgraditi grafikon, dovoljno je uneti nekoliko početnih vrednosti:

  • projektna temperatura u dovodnom cjevovodu toplinske mreže T1
  • projektna temperatura u povratnoj cijevi toplinske mreže T2
  • projektna temperatura u dovodnoj cijevi sistema grijanja T3
  • Vanjska temperatura zraka Tn.v.
  • Unutrašnja temperatura Tv.p.
  • koeficijent "n" (obično se ne mijenja i jednak je 0,25)
  • Minimalni i maksimalni rez na temperaturnom grafikonu Cut min, Cut max.

Unošenje početnih podataka u tablicu proračuna grafa temperature Sve. ništa se više ne traži od tebe. Rezultati proračuna biće u prvoj tabeli tabele. Podebljano je. Grafikoni će također biti obnovljeni za nove vrijednosti.

    Svi ventili ili kapije u jedinici lifta su zatvoreni (ulaz, kuća i topla voda).

  • Lift je demontiran.
  • Mlaznica se uklanja i probija za 0,5-1 mm.
  • Lift se sklapa i pokreće odzračivanjem zraka obrnutim redoslijedom.
  • Savjet: umjesto paronitnih brtvi na prirubnice možete staviti gumene izrezane po veličini prirubnice iz komore automobila. Alternativa je ugradnja lifta sa podesivom mlaznicom. Supresija usisavanja B kritična situacija(u ekstremno hladnim i ledenim stanovima) mlaznica se može u potpunosti ukloniti.

    Kako usis ne bi postao skakač, potiskuje se palačinkom od čeličnog lima debljine najmanje milimetra. Nakon demontaže mlaznice, donja prirubnica je prigušena. Pažnja: ovo je hitna mjera, koja se koristi u ekstremnim slučajevima, jer u ovom slučaju temperatura radijatora u kući može doseći 120-130 stepeni.

Koji su zakoni podložni promjenama temperature rashladne tekućine u sistemima centralno grijanje? Šta je to - temperaturni grafikon sistema grijanja 95-70? Kako uskladiti parametre grijanja sa rasporedom? Pokušajmo odgovoriti na ova pitanja.

Šta je to

Počnimo s nekoliko apstraktnih teza.

  • Sa promjenom vremenskih uvjeta, gubitak topline bilo koje zgrade mijenja se nakon njih.. U mrazima, kako bi se održala konstantna temperatura u stanu, potrebno je mnogo više toplinske energije nego u toplom vremenu.

Da pojasnimo: troškovi grijanja nisu određeni apsolutnom vrijednošću temperature zraka na ulici, već deltom između ulice i unutrašnjosti.
Dakle, na +25C u stanu i -20 u dvorištu troškovi grijanja će biti potpuno isti kao i na +18 odnosno -27.

  • Toplotni tok iz grijač pri konstantnoj temperaturi rashladne tečnosti će takođe biti konstantna.
    Pad sobne temperature malo će ga povećati (opet, zbog povećanja delte između rashladnog sredstva i zraka u prostoriji); međutim, ovo povećanje će biti kategorički nedovoljno da se nadoknadi povećani gubitak toplote kroz omotač zgrade. Samo zato donji prag temperatura u stanu ograničena je trenutnim SNiP-om na 18-22 stepena.

Očigledno rješenje problema povećanja gubitaka je povećanje temperature rashladne tekućine.

Očigledno, njegov rast bi trebao biti proporcionalan smanjenju temperature na ulici: što je hladnije izvan prozora, to će se gubici topline morati nadoknaditi. Što nas, zapravo, dovodi do ideje da kreiramo određenu tabelu za podudaranje obe vrednosti.

Dakle, grafikon temperaturni sistem grijanje je opis ovisnosti temperatura dovodnog i povratnog cjevovoda od vanjskog vremena.

Kako sve to funkcionira

Postoje dva različite vrste grafikoni:

  1. Za mreže grijanja.
  2. Za sistem kućnog grijanja.

Da bi se razjasnila razlika između ovih koncepata, vjerovatno je vrijedno započeti kratka digresija kako radi centralno grijanje.

CHP - toplotne mreže

Funkcija ovog snopa je zagrijavanje rashladne tekućine i isporuka je krajnjem korisniku. Dužina toplovoda se obično meri u kilometrima, a ukupna površina - u hiljadama i hiljadama kvadratnih metara. Uprkos mjerama za toplinsku izolaciju cijevi, gubici topline su neizbježni: prolaskom puta od CHP ili kotlovnice do granice kuće, tehnička voda djelimično ohladiti.

Otuda zaključak: da bi stigao do potrošača, uz održavanje prihvatljive temperature, dovod toplovoda na izlazu iz CHP treba biti što topliji. Ograničavajući faktor je tačka ključanja; međutim, s povećanjem pritiska, pomiče se u smjeru povećanja temperature:

Pritisak, atmosfera Tačka ključanja, stepeni Celzijusa
1 100
1,5 110
2 119
2,5 127
3 132
4 142
5 151
6 158
7 164
8 169

Tipični pritisak u dovodnom cjevovodu toplovoda je 7-8 atmosfera. Ova vrijednost, čak i uzimajući u obzir gubitke pritiska tokom transporta, omogućava vam da pokrenete sistem grijanja u kućama visine do 16 spratova bez dodatnih pumpi. Istovremeno je siguran za trase, uspone i dovode, crijeva miješalica i druge elemente sistema grijanja i tople vode.

Uz određenu marginu, gornja granica temperature dovoda uzima se jednakom 150 stepeni. Najtipičnije temperaturne krivulje grijanja za grijanje su u rasponu od 150/70 - 105/70 (temperatura dovoda i povrata).

Kuća

Postoji niz dodatnih ograničavajućih faktora u sistemu grijanja doma.

  • Maksimalna temperatura rashladnog sredstva u njemu ne može biti veća od 95 C za dvocijevne i 105 C za.

Usput: u predškolskim obrazovnim ustanovama ograničenje je mnogo strože - 37 C.
Cijena snižavanja temperature dovoda je povećanje broja radijatora: u sjevernim regijama zemlje grupne prostorije u vrtićima doslovno su okružene njima.

  • Delta temperature između dovodnog i povratnog cjevovoda, iz očiglednih razloga, trebala bi biti što manja - inače će temperatura baterija u zgradi znatno varirati. To podrazumijeva brzu cirkulaciju rashladne tekućine.
    Međutim, prebrza cirkulacija kroz sistem grijanja kuće će dovesti do toga da će se povratna voda vratiti na trasu sa pretjerano visokom temperaturom, što je zbog niza tehničkih ograničenja u radu CHP-a neprihvatljivo.

Problem se rješava ugradnjom jednog ili više liftova u svaku kuću, u kojima se povratni tok miješa sa strujom vode iz dovodnog cjevovoda. Dobivena smjesa, zapravo, osigurava brzu cirkulaciju velike količine rashladne tekućine bez pregrijavanja povratnog cjevovoda trase.

Za mreže unutar kuće postavlja se poseban temperaturni grafikon, uzimajući u obzir shemu rada lifta. Za dvocijevne krugove, tipičan grafikon temperature grijanja je 95-70, za jednocijevne krugove (što je, međutim, rijetko u stambenim zgradama) - 105-70.

Klimatske zone

Glavni faktor koji određuje algoritam rasporeda je procijenjena zimska temperatura. Tablica temperature nosača topline treba biti sastavljena na takav način da maksimalne vrijednosti (95/70 i 105/70) na vrhuncu mraza osiguravaju temperaturu u stambenim prostorijama koja odgovara SNiP-u.

Evo primjera rasporeda unutar kuće za sljedeće uslove:

  • Uređaji za grijanje - radijatori s dovodom rashladne tekućine odozdo prema gore.
  • Grijanje - dvocijevno, ko.

  • Procijenjena vanjska temperatura zraka je -15 C.
Spoljna temperatura vazduha, S Podnošenje, C Povratak, C
+10 30 25
+5 44 37
0 57 46
-5 70 54
-10 83 62
-15 95 70

Nijansa: pri određivanju parametara rute i kućnog sistema grijanja uzima se prosječna dnevna temperatura.
Ako je -15 noću i -5 tokom dana, -10C se pojavljuje kao vanjska temperatura.

A evo i nekih izračunatih vrijednosti zimske temperature za ruske gradove.

Grad Projektna temperatura, S
Arkhangelsk -18
Belgorod -13
Volgograd -17
Verkhoyansk -53
Irkutsk -26
Krasnodar -7
Moskva -15
Novosibirsk -24
Rostov na Donu -11
Sochi +1
Tyumen -22
Khabarovsk -27
Yakutsk -48

Na fotografiji - zima u Verhojansku.

Prilagodba

Ako je za parametre trase odgovorno rukovodstvo TE i toplovodne mreže, onda odgovornost za parametre unutar-kućne mreže snose stanovnici. Vrlo tipična situacija je kada, kada se stanari žale na hladnoću u stanovima, mjerenja pokazuju odstupanja od rasporeda naniže. Nešto rjeđe se dešava da mjerenja u bunarima toplotnih pumpi pokažu precijenjenu povratnu temperaturu iz kuće.

Kako svojim rukama uskladiti parametre grijanja s rasporedom?

Razvrtanje mlaznice

Sa niskim temperaturama smeše i povrata, očigledno rešenje je povećanje prečnika mlaznice elevatora. Kako se to radi?

Uputstvo je na usluzi čitaocu.

  1. Svi ventili ili kapije u jedinici lifta su zatvoreni (ulaz, kuća i topla voda).
  2. Lift je demontiran.
  3. Mlaznica se uklanja i probija za 0,5-1 mm.
  4. Lift se sklapa i pokreće odzračivanjem zraka obrnutim redoslijedom.

Savjet: umjesto paronitnih brtvi na prirubnice možete staviti gumene izrezane po veličini prirubnice iz komore automobila.

Alternativa je ugradnja lifta sa podesivom mlaznicom.

Suzbijanje usisavanja

U kritičnoj situaciji (jaka hladnoća i smrzavanje stanovi), mlaznica se može potpuno ukloniti. Kako usis ne bi postao skakač, potiskuje se palačinkom od čeličnog lima debljine najmanje milimetra.

Pažnja: ovo je hitna mjera, koja se koristi u ekstremnim slučajevima, jer u ovom slučaju temperatura radijatora u kući može doseći 120-130 stepeni.

Diferencijalno podešavanje

Na povišenim temperaturama, kao privremena mjera do kraja grejne sezone, praktikuje se podešavanje diferencijala na liftu ventilom.

  1. PTV se prebacuje na dovodnu cijev.
  2. Manometar je ugrađen na povratku.
  3. Ulazni zasun na povratnom cevovodu se potpuno zatvara, a zatim se postepeno otvara uz kontrolu pritiska na manometru. Ako samo zatvorite ventil, slijeganje obraza na stabljiku može zaustaviti i odmrznuti krug. Razlika se smanjuje povećanjem povratnog pritiska za 0,2 atmosfere dnevno uz dnevnu kontrolu temperature.

Zaključak

dr.sc. Petrushchenkov V.A., Istraživačka laboratorija „Industrijska toplotna energija“, Državni politehnički univerzitet Petra Velikog u Sankt Peterburgu, Sankt Peterburg

1. Problem smanjenja projektnog temperaturnog rasporeda za regulaciju sistema za opskrbu toplinom u cijeloj zemlji

Tokom proteklih decenija, u gotovo svim gradovima Ruske Federacije, došlo je do veoma značajnog jaza između stvarnih i projektovanih temperaturnih krivulja za regulaciju sistema za snabdevanje toplotom. Kao što znate, zatvoreno otvoreni sistemi centraliziranog snabdijevanja toplinom u gradovima SSSR-a dizajnirani su korištenjem visokokvalitetne regulacije s temperaturnim rasporedom za regulaciju sezonskog opterećenja od 150-70 ° C. Takav temperaturni raspored bio je naširoko korišten i za termoelektrane i za kotlarnice. Ali, već počevši od kraja 70-ih godina, u stvarnim kontrolnim rasporedima pojavila su se značajna odstupanja temperatura vode u mreži od njihovih projektnih vrijednosti na niske temperature ah vanjski zrak. U projektnim uslovima za temperaturu spoljašnjeg vazduha, temperatura vode u dovodnim toplovodima se smanjila sa 150 °S na 85…115 °S. Snižavanje temperaturnog rasporeda od strane vlasnika izvora toplote obično je bilo formalizovano kao rad na projektnom rasporedu od 150-70°C sa „prekidanjem” na niskoj temperaturi od 110…130°S. Pri nižim temperaturama rashladnog sredstva, sistem za opskrbu toplinom je trebao raditi prema rasporedu otpreme. Proračunska opravdanja za takav prelaz nisu poznata autoru članka.

Prelazak na niži temperaturni raspored, na primjer, 110-70 °C sa projektnog rasporeda od 150-70 °C, trebao bi povući niz ozbiljnih posljedica, koje su diktirane balansnim energetskim odnosima. U vezi sa smanjenjem procijenjene temperaturne razlike mrežne vode za 2 puta, uz održavanje toplinskog opterećenja grijanja, ventilacije, potrebno je osigurati povećanje potrošnje mrežne vode za ove potrošače također za 2 puta. Odgovarajući gubici tlaka u mrežnoj vodi u mreži grijanja i u opremi za izmjenu topline izvora topline i toplinskih tačaka s kvadratnim zakonom otpora će se povećati za 4 puta. Potrebno povećanje snage mrežne pumpe trebalo bi da se desi 8 puta. Očigledno je da ni jedno ni drugo propusnost toplotnih mreža projektovanih za raspored od 150-70 °S, niti ugrađene mrežne pumpe će obezbediti isporuku rashladne tečnosti potrošačima sa duplim protokom u odnosu na projektovanu vrednost.

S tim u vezi, sasvim je jasno da će, kako bi se osigurao temperaturni raspored od 110-70 °C, ne na papiru, već u stvarnosti, biti potrebna radikalna rekonstrukcija i izvora topline i toplinske mreže sa toplinskim točkama, čiji su troškovi nepodnošljivi za vlasnike sistema za snabdevanje toplotom.

Zabrana upotrebe za toplotne mreže rasporeda regulacije opskrbe toplinom s „ograničenjem“ po temperaturi, data u klauzuli 7.11 SNiP 41-02-2003 „Toplotne mreže“, nije mogla utjecati na raširenu praksu njegove primjene. U ažuriranoj verziji ovog dokumenta, SP 124.13330.2012, režim sa „isključenjem“ temperature uopšte se ne pominje, odnosno ne postoji direktna zabrana ovog načina regulacije. To znači da treba izabrati takve metode sezonske regulacije opterećenja u kojima će se riješiti glavni zadatak - osiguranje normalizirane temperature u prostorijama i normalizirane temperature vode za potrebe opskrbe toplom vodom.

U odobrenu Listu nacionalnih standarda i kodeksa prakse (dijelova takvih standarda i kodeksa prakse), čime se, na obaveznoj osnovi, osigurava usklađenost sa zahtjevima savezni zakon od 30. decembra 2009. br. 384-FZ " Tehnički propis o sigurnosti zgrada i konstrukcija" (Uredba Vlade Ruske Federacije od 26. decembra 2014. br. 1521) uključena je u revizije SNiP-a nakon ažuriranja. To znači da je upotreba temperatura "odsjecanja" danas potpuno zakonska mjera, kako sa stanovišta Liste nacionalnih standarda i kodeksa pravila, tako i sa stanovišta ažuriranog izdanja profila SNiP „Toplotne mreže“.

Federalni zakon br. 190-FZ od 27. jula 2010. „O snabdijevanju toplotom“, „Pravila i norme tehnički rad Stambeni fond” (odobren Uredbom Gosstroja Ruske Federacije od 27. septembra 2003. br. 170), SO 153-34.20.501-2003 „Pravila za tehnički rad elektrana i mreža Ruske Federacije” takođe rade ne zabranjuju regulaciju sezonskog toplotnog opterećenja sa „graničnom“ temperaturom.

U 90-im godinama, dobrim razlozima koji su objasnili radikalno smanjenje projektnog temperaturnog rasporeda smatrali su se propadanje toplinskih mreža, armatura, kompenzatora, kao i nemogućnost obezbjeđivanja potrebnih parametara na izvorima topline zbog stanja razmjene topline. oprema. Uprkos velikim količinama radovi na popravci koji se konstantno provodi u toplotnim mrežama i izvorima toplote poslednjih decenija, ovaj razlog ostaje relevantan i danas za značajan deo gotovo svakog sistema snabdevanja toplotom.

Treba napomenuti da u specifikacije za priključenje na mreže grijanja većine izvora topline i dalje se daje projektni temperaturni raspored od 150-70 ° C ili blizu njega. Prilikom koordinacije projekata centralnih i pojedinačnih toplotnih tačaka, neizostavan zahtev vlasnika toplotne mreže je da tokom celog perioda ograniči protok mrežne vode iz dovodnog toplovoda toplotne mreže. period grijanja u strogom skladu sa dizajnom, a ne sa stvarnim rasporedom kontrole temperature.

Trenutno, zemlja masovno razvija sheme opskrbe toplinom za gradove i naselja, u kojima se i projektni rasporedi za regulaciju 150-70 ° C, 130-70 ° C smatraju ne samo relevantnim, već i važećim za 15 godina unaprijed. Istovremeno, nema objašnjenja kako u praksi osigurati ovakve grafikone, ne postoji jasno opravdanje za mogućnost obezbjeđivanja priključnog toplotnog opterećenja pri niskim spoljnim temperaturama u uslovima realne regulacije sezonskog toplotnog opterećenja.

Takav jaz između deklariranih i stvarnih temperatura nosača topline mreže grijanja je nenormalan i nema nikakve veze s teorijom rada sustava za opskrbu toplinom, datoj, na primjer, u.

U ovim uslovima izuzetno je važno analizirati realnu situaciju sa hidraulični način rada rada toplotnih mreža i sa mikroklimom grijanih prostorija pri izračunatoj temperaturi vanjskog zraka. Stvarna situacija je takva da, i pored značajnog smanjenja temperaturnog rasporeda, uz obezbeđivanje projektovanog protoka mrežne vode u toplovodnim sistemima gradova, po pravilu ne dolazi do značajnog smanjenja projektnih temperatura u prostorijama, što dovelo bi do rezonantnih optužbi vlasnika toplotnih izvora da ne ispune svoje glavni zadatak: osiguranje standardnih temperatura u prostorijama. S tim u vezi nameću se sljedeća prirodna pitanja:

1. Šta objašnjava takav skup činjenica?

2. Da li je moguće ne samo objasniti trenutno stanje stvari, već i potkrijepiti, na osnovu odredbi zahtjeva modernog normativna dokumentacija, ili „odsjecanje“ temperaturnog grafikona na 115°C, ili novog temperaturnog grafikona od 115-70 (60) °C sa kvalitetnom regulacijom sezonskog opterećenja?

Ovaj problem, naravno, stalno privlači svačiju pažnju. Stoga se u periodičnoj štampi pojavljuju publikacije koje daju odgovore na postavljena pitanja i daju preporuke za otklanjanje jaza između projektnih i stvarnih parametara sistema za kontrolu toplinskog opterećenja. U pojedinim gradovima već su poduzete mjere za smanjenje temperaturnog rasporeda i pokušavaju se generalizirati rezultati takvog prijelaza.

Sa naše tačke gledišta, ovaj problem je najistaknutije i najjasnije razmatran u članku Gershkovich V.F. .

Napominje nekoliko izuzetno važnih odredbi, koje su, između ostalog, generalizacija praktičnih radnji za normalizaciju rada sistema za opskrbu toplinom u uvjetima niskotemperaturnog „prekidanja“. Napominje se da praktični pokušaji povećanja protoka u mreži kako bi se uskladio sa sniženim temperaturnim rasporedom nisu bili uspješni. Oni su, prije, doprinijeli hidrauličnom neusklađenosti toplinske mreže, uslijed čega su troškovi mrežne vode između potrošača preraspodijeljeni nesrazmjerno njihovim toplinskim opterećenjima.

Istovremeno, uz održavanje projektovanog protoka u mreži i smanjenje temperature vode u dovodnoj liniji, čak i pri niskim vanjskim temperaturama, u nekim slučajevima je bilo moguće osigurati temperaturu zraka u prostorijama na prihvatljivom nivou. . Ovu činjenicu autor objašnjava činjenicom da u opterećenju grijanja vrlo značajan dio snage otpada na grijanje svježeg zraka, čime se osigurava normativna izmjena zraka u prostoriji. Prava izmjena zraka u hladnim danima daleko je od standardne vrijednosti, jer se ne može osigurati samo otvaranjem ventilacijskih otvora i krila prozorskih blokova ili prozora s dvostrukim staklima. U članku se naglašava da su ruski standardi za razmjenu zraka nekoliko puta veći od onih u Njemačkoj, Finskoj, Švedskoj i SAD. Napominje se da je u Kijevu primijenjeno smanjenje temperaturnog rasporeda zbog "prekidanja" sa 150 ° C na 115 ° C i nije imalo negativnih posljedica. Sličan posao obavljen je u toplovodnim mrežama Kazana i Minska.

Ovaj članak govori o trenutnom stanju Ruski zahtevi normativna dokumentacija o razmjeni vazduha prostorija. Na primjeru modelskih zadataka sa usrednjenim parametrima sistema za opskrbu toplinom prikazan je utjecaj različitih faktora na njegovo ponašanje pri temperaturi vode u dovodnom vodu od 115 °C u projektnim uvjetima za vanjsku temperaturu, uključujući:

Smanjenje temperature zraka u prostorijama uz održavanje projektovanog protoka vode u mreži;

Povećanje protoka vode u mreži radi održavanja temperature zraka u prostorijama;

Smanjenje snage sistema grijanja smanjenjem izmjene zraka za projektovani protok vode u mreži uz osiguranje izračunate temperature zraka u prostorijama;

Procjena kapaciteta sistema grijanja smanjenjem razmjene zraka za stvarno ostvarivo povećana potrošnja vode u mreži uz obezbeđivanje izračunate temperature vazduha u prostorijama.

2. Početni podaci za analizu

Kao početni podaci, pretpostavlja se da postoji izvor opskrbe toplinom sa dominantnim opterećenjem grijanja i ventilacije, dvocijevna toplovodna mreža, centralno grijanje i ITP, grijači, grijalice, slavine. Vrsta sistema grijanja nije od suštinskog značaja. Pretpostavlja se da projektni parametri svih karika sistema za snabdevanje toplotom obezbeđuju normalan rad sistema za snabdevanje toplotom, odnosno, u prostorijama svih potrošača, projektovana temperatura je podešena na t w.r = 18 °C, pod uslovom temperaturni raspored toplovodne mreže 150-70°C, projektnu vrijednost protoka vode mreže, standardnu ​​razmjenu zraka i kvalitetnu regulaciju sezonskog opterećenja. Izračunata spoljna temperatura vazduha jednaka je prosečnoj temperaturi hladnog petodnevnog perioda sa faktorom sigurnosti 0,92 u trenutku izrade sistema za snabdevanje toplotom. Omjer miješanja elevatorskih jedinica određen je općeprihvaćenom temperaturnom krivom za regulaciju sistema grijanja 95-70 °C i jednak je 2,2.

Treba napomenuti da je u ažuriranoj verziji SNiP „Građevinska klimatologija“ SP 131.13330.2012 za mnoge gradove došlo do povećanja projektne temperature hladnog petodnevnog perioda za nekoliko stepeni u poređenju sa verzijom dokumenta SNiP 23- 01-99.

3. Proračuni režima rada sistema za opskrbu toplinom pri temperaturi vode direktne mreže od 115 °C

Razmatra se rad u novim uslovima sistema za snabdevanje toplotom, nastajao decenijama po savremenim standardima za period izgradnje. Projektni temperaturni raspored za kvalitativnu regulaciju sezonskog opterećenja je 150-70 °C. Smatra se da je u trenutku puštanja u rad sistem za opskrbu toplinom tačno obavljao svoje funkcije.

Kao rezultat analize sistema jednačina koji opisuju procese u svim karikama sistema za snabdevanje toplotom, utvrđeno je njegovo ponašanje na maksimalna temperatura voda u dovodnom vodu 115 °C pri procijenjenoj vanjskoj temperaturi, omjeri miješanja elevatorskih jedinica 2.2.

Jedan od definirajućih parametara analitičke studije je potrošnja mrežne vode za grijanje i ventilaciju. Njegova vrijednost se uzima u sljedećim opcijama:

Projektna vrijednost protoka u skladu s rasporedom 150-70 ° C i deklarirano opterećenje grijanja, ventilacije;

Vrijednost protoka, koji obezbjeđuje projektnu temperaturu zraka u prostorijama prema projektnim uvjetima za temperaturu vanjskog zraka;

Stvarna maksimalna moguća vrijednost protoka vode u mreži, uzimajući u obzir instalirane mrežne pumpe.

3.1. Smanjenje temperature zraka u prostorijama uz održavanje povezanih toplinskih opterećenja

Odredite kako se promijeniti prosječna temperatura u prostorijama na temperaturi mrežne vode u dovodnom vodu t o 1 \u003d 115 ° C, projektna potrošnja mrežne vode za grijanje (pretpostavit ćemo da je cijelo opterećenje grijanje, budući da je opterećenje ventilacije istog tipa), prema projektnom rasporedu 150-70°C, pri vanjskoj temperaturi t n.o = -25°S. Smatramo da su na svim čvorovima elevatora koeficijenti miješanja u izračunati i jednaki

Za projektovane uslove rada sistema za snabdevanje toplotom ( , , , ) važi sledeći sistem jednačina:

gdje je prosječna vrijednost koeficijenta prijenosa topline svih grijaćih uređaja sa ukupnom površinom izmjene topline F, je prosjek temperaturna razlika između rashladnog sredstva uređaja za grijanje i temperature zraka u prostorijama, G o - procijenjeni protok vode iz mreže koja ulazi u čvorove lifta, G p - procijenjeni protok vode koja ulazi u uređaje za grijanje, G p = (1 + u) G o, s - specifični maseni izobarični toplotni kapacitet vode, - prosječna projektna vrijednost koeficijenta prijenosa topline zgrade, uzimajući u obzir transport toplinske energije kroz vanjske ograde ukupne površine A i cijenu toplinske energije energije za zagrevanje standardnog spoljašnjeg vazduha.

Pri niskoj temperaturi mrežne vode u dovodnom vodu t o 1 =115 ° C, uz održavanje projektovane izmjene zraka, prosječna temperatura zraka u prostorijama opada na vrijednost t in. Odgovarajući sistem jednadžbe za projektne uslove za vanjski zrak imat će oblik

, (3)

gdje je n eksponent u ovisnosti kriterija koeficijenta prijenosa topline uređaja za grijanje na prosječnu temperaturnu razliku, vidi tabelu. 9.2, str.44. Za najčešće grijaće uređaje u obliku lijevanog željeza sekcijski radijatori i čelične panelne konvektore tipa RSV i RSG kada se rashladno sredstvo kreće odozgo prema dolje n=0,3.

Hajde da uvedemo notaciju , , .

Iz (1)-(3) slijedi sistem jednačina

,

,

čija rješenja izgledaju ovako:

, (4)

(5)

. (6)

Za date projektne vrijednosti parametara sistema za opskrbu toplinom

,

Jednadžba (5), uzimajući u obzir (3) za datu temperaturu direktne vode u projektnim uslovima, omogućava nam da dobijemo omjer za određivanje temperature zraka u prostorijama:

Rješenje ove jednačine je t in =8,7°C.

Relativno toplotna snaga sistem grijanja je

Dakle, kada se temperatura vode u direktnoj mreži promijeni sa 150 °C na 115 °C, prosječna temperatura zraka u prostorijama opada sa 18 °C na 8,7 °C, toplinska snaga sistema grijanja opada za 21,6%.

Izračunate vrijednosti temperatura vode u sistemu grijanja za prihvaćeno odstupanje od temperaturnog rasporeda su °S, °S.

Izvršeni proračun odgovara slučaju kada protok spoljašnjeg vazduha tokom rada sistema za ventilaciju i infiltraciju odgovara projektovanim standardnim vrednostima do temperature spoljašnjeg vazduha t n.o = -25°C. Budući da se u stambenim zgradama po pravilu koristi prirodna ventilacija koju stanovnici organiziraju kada ventiliraju pomoću ventilacijskih otvora, prozorskih krila i mikro-ventilacijskih sistema za prozore s dvostrukim staklom, može se tvrditi da pri niskim vanjskim temperaturama protok stopa hladnog zraka koji ulazi u prostorije, posebno nakon praktic potpuna zamjena prozorski blokovi na prozorima s dvostrukim staklom daleko su od normativne vrijednosti. Stoga je temperatura zraka u stambenim prostorijama zapravo mnogo viša od određene vrijednosti t in = 8,7 °C.

3.2 Određivanje snage sistema grijanja smanjenjem ventilacije unutrašnjeg zraka pri procijenjenom protoku vode iz mreže

Odredimo koliko je potrebno smanjiti troškove toplinske energije za ventilaciju u razmatranom ne-projektom načinu rada niske temperature mrežnu vodu toplinske mreže tako da prosječna temperatura zraka u prostorijama ostane na standardnom nivou, odnosno t u \u003d t w.r \u003d 18 °C.

Sistem jednačina koje opisuju proces rada sistema za snabdevanje toplotom u ovim uslovima će imati oblik

Zajedničko rješenje (2') sa sistemima (1) i (3) slično kao u prethodnom slučaju daje sljedeće relacije za temperature različitih protoka vode:

,

,

.

Jednadžba za datu temperaturu direktne vode u projektnim uslovima za vanjsku temperaturu omogućava da se pronađe smanjeno relativno opterećenje sustava grijanja (smanjena je samo snaga ventilacionog sistema, prijenos topline kroz vanjske ograde je tačno očuvan ):

Rješenje ove jednačine je =0,706.

Dakle, kada se temperatura vode u direktnoj mreži promeni sa 150°C na 115°C, moguće je održavanje temperature vazduha u prostorijama na nivou od 18°C ​​smanjenjem ukupne toplotne snage sistema grejanja na 0,706 projektne vrijednosti smanjenjem troškova grijanja vanjskog zraka. Toplotna snaga sistema grijanja opada za 29,4%.

Izračunate vrijednosti temperatura vode za prihvaćeno odstupanje od temperaturnog grafikona jednake su °C, °S.

3.4 Povećanje potrošnje vode u mreži kako bi se osigurala standardna temperatura zraka u prostorijama

Odredimo kako bi se potrošnja mrežne vode u toplinskoj mreži za potrebe grijanja trebala povećati kada temperatura vode u mreži u dovodnom vodu padne na 1 = 115 ° C u projektnim uvjetima za vanjsku temperaturu t n.o \u003d -25 ° C, tako da je prosječna temperatura zraka u prostorijama ostala na normativnom nivou, odnosno t u \u003d t w.r \u003d 18 °C. Ventilacija prostorija odgovara projektnoj vrijednosti.

Sistem jednadžbi koje opisuju proces rada sistema za snabdevanje toplotom, u ovom slučaju će imati oblik, uzimajući u obzir povećanje vrednosti protoka vode mreže do G o y i protoka vode kroz sistem grijanja G pu =G oh (1 + u) sa konstantnom vrijednošću koeficijenta miješanja čvorova lifta u= 2,2. Radi jasnoće, reprodukujemo u ovom sistemu jednačine (1)

.

Iz (1), (2”), (3’) slijedi sistem jednadžbi srednjeg oblika

Rješenje datog sistema ima oblik:

° C, t o 2 \u003d 76,5 ° C,

Dakle, kada se temperatura vode u direktnoj mreži promeni sa 150 °C na 115 °C, održavanje prosečne temperature vazduha u prostorijama na nivou od 18 °C moguće je povećanjem potrošnje mrežne vode u dovodu (povratu) linija toplovodne mreže za potrebe sistema grijanja i ventilacije u 2 ,08 puta.

Očigledno, ne postoji takva rezerva u pogledu potrošnje vode u mreži kako na izvorima toplote tako i na crpnim stanicama, ako ih ima. Osim toga, tako veliko uvećanje potrošnja vode u mreži dovešće do povećanja gubitaka pritiska usled trenja u cevovodima toplovodne mreže i u opremi grejnih mesta i izvora toplote za više od 4 puta, što se ne može realizovati zbog nedostatka snabdevanja mrežnih pumpi. u smislu pritiska i snage motora. Posljedično, povećanje potrošnje vode u mreži za 2,08 puta samo zbog povećanja broja instaliranih mrežnih pumpi, uz održavanje njihovog pritiska, neminovno će dovesti do nezadovoljavajućeg rada elevatorskih jedinica i izmjenjivača topline na većini grijnih mjesta toplinske energije. sistem snabdevanja.

3.5 Smanjenje snage sistema grejanja smanjenjem ventilacije unutrašnjeg vazduha u uslovima povećane potrošnje vode iz mreže

Za neke izvore topline potrošnja mrežne vode u mreži može se obezbijediti iznad projektne vrijednosti za desetine posto. To je zbog smanjenja toplinskih opterećenja do kojih je došlo posljednjih decenija, kao i zbog prisustva određene rezerve performansi instaliranih mrežnih pumpi. Uzmimo maksimalnu relativnu vrijednost potrošnje vode u mreži jednaku =1,35 projektne vrijednosti. Uzimamo u obzir i moguće povećanje izračunate vanjske temperature zraka prema SP 131.13330.2012.

Odredite koliko ćete smanjiti prosječna potrošnja spoljni vazduh za ventilaciju prostorija u režimu snižene temperature mrežne vode toplovodne mreže, tako da prosečna temperatura vazduha u prostorijama ostane na standardnom nivou, odnosno t in = 18°C.

Za nisku temperaturu mrežne vode u dovodnom vodu t o 1 = 115 °C smanjuje se protok zraka u prostorijama kako bi se održala izračunata vrijednost t na = 18 °C u uslovima povećanja protoka mreže. vode za 1,35 puta i povećanje izračunate temperature hladnog petodnevnog perioda. Odgovarajući sistem jednačina za nove uslove imaće oblik

Relativno smanjenje toplotne snage sistema grijanja je jednako

. (3’’)

Iz (1), (2''), (3'') slijedi rješenje

,

,

.

Za date vrijednosti parametara sistema za opskrbu toplinom i = 1,35:

; =115 °S; =66 °S; \u003d 81,3 ° C.

Uzimamo u obzir i povećanje temperature hladnog petodnevnog perioda na vrijednost t n.o_ = -22 °C. Relativna toplotna snaga sistema grejanja je jednaka

Relativna promjena ukupnih koeficijenata prijenosa topline jednaka je i zbog smanjenja brzine protoka zraka ventilacionog sistema.

Za kuće izgrađene prije 2000. godine, udio potrošnje toplinske energije za ventilaciju prostorija u centralnim regijama Ruske Federacije iznosi 40 ... .

Za kuće izgrađene nakon 2000. godine, udio troškova ventilacije povećava se na 50 ... 55%, pad brzine protoka zraka ventilacijskog sistema za približno 1,3 puta će održati izračunatu temperaturu zraka u prostorijama.

Iznad u 3.2 prikazano je da sa projektnim vrijednostima potrošnje vode u mreži, temperature unutrašnjeg zraka i projektne vanjske temperature zraka, smanjenje temperature vode u mreži na 115°C odgovara relativnoj snazi ​​sistema grijanja od 0,709. Ako se ovo smanjenje snage pripiše smanjenju grijanja ventilacionog zraka, onda bi za kuće izgrađene prije 2000. godine protok zraka ventilacionog sistema prostorija trebao pasti za približno 3,2 puta, za kuće izgrađene nakon 2000. godine - za 2,3 puta.

Analiza mjernih podataka sa mjernih jedinica toplinske energije pojedinačnih stambenih zgrada pokazuje da smanjenje potrošnje toplinske energije u hladnim danima odgovara smanjenju standardne izmjene zraka za faktor 2,5 ili više.

4. Potreba za pojašnjavanjem izračunatog toplotnog opterećenja sistema za snabdevanje toplotom

Neka deklarisano opterećenje sistema grijanja stvorenog posljednjih decenija bude . Ovo opterećenje odgovara projektnoj temperaturi vanjskog zraka, relevantnoj u periodu izgradnje, uzetoj za određenost t n.o = -25°C.

U nastavku slijedi procjena stvarnog smanjenja navedenog procijenjenog opterećenje grijanja uzrokovane uticajem različitih faktora.

Povećanje izračunate vanjske temperature na -22 °C smanjuje izračunato opterećenje grijanja na (18+22)/(18+25)x100%=93%.

Osim toga, sljedeći faktori dovode do smanjenja izračunatog opterećenja grijanja.

1. Zamjena prozorskih blokova sa dvostrukim staklima, koja se odvijala skoro svuda. Udio prijenosnih gubitaka toplinske energije kroz prozore iznosi oko 20% ukupnog grijnog opterećenja. Zamjena prozorskih blokova s ​​dvostrukim staklima dovela je do povećanja toplinskog otpora sa 0,3 na 0,4 m 2 ∙K / W, odnosno, toplinska snaga gubitka topline smanjena je na vrijednost: x100% \u003d 93,3%.

2. Za stambene zgrade, udio ventilacionog opterećenja u opterećenju grijanja u projektima završenim prije početka 2000-ih je oko 40...45%, kasnije - oko 50...55%. Uzmimo prosječan udio ventilacijske komponente u opterećenju grijanja u iznosu od 45% deklariranog grijnog opterećenja. To odgovara stopi razmjene zraka od 1,0. By savremenim standardima SRT maksimalna brzina razmjene zraka je na nivou od 0,5, prosječna dnevna brzina izmjene zraka za stambenu zgradu je na nivou od 0,35. Dakle, smanjenje brzine izmjene zraka sa 1,0 na 0,35 dovodi do pada opterećenja grijanja stambene zgrade na vrijednost:

x100%=70,75%.

3. Opterećenje ventilacije od strane različitih potrošača zahtijeva se nasumično, stoga, kao i opterećenje PTV-a za izvor topline, njegova vrijednost se ne sumira aditivno, već uzimajući u obzir koeficijente satne neravnomjernosti. Udio maksimalnog ventilacijskog opterećenja u deklariranom opterećenju grijanja je 0,45x0,5 / 1,0 = 0,225 (22,5%). Koeficijent satne neujednačenosti je procijenjen na isti kao i za snabdijevanje toplom vodom, jednak K sat.vent = 2,4. Dakle, ukupno opterećenje sistema grijanja za izvor topline, uzimajući u obzir smanjenje maksimalnog opterećenja ventilacije, zamjenu prozorskih blokova sa dvostrukim staklima i neistovremenu potražnju za ventilacijskim opterećenjem, bit će 0,933x( 0,55+0,225/2,4)x100%=60,1% deklarisanog opterećenja.

4. Uzimanje u obzir povećanja projektovane vanjske temperature će dovesti do više više pada izračunato opterećenje grijanja.

5. Izvršene procjene pokazuju da pojašnjenje toplotnog opterećenja sistema grijanja može dovesti do njegovog smanjenja za 30 ... 40%. Ovakvo smanjenje toplotnog opterećenja omogućava nam da očekujemo da se, uz zadržavanje projektovanog protoka vode iz mreže, izračunata temperatura vazduha u prostorijama može obezbediti primenom „ograničenja“ direktne temperature vode na 115 °C za nisku spoljašnju temperaturu. temperature vazduha (vidi rezultate 3.2). Ovo se može sa još većim razlogom tvrditi ako postoji rezerva u vrijednosti potrošnje vode u mreži na izvoru topline sistema za opskrbu toplinom (vidi rezultate 3.4).

Navedene procjene su ilustrativne, ali iz njih proizilazi da se na osnovu savremenih zahtjeva regulatorne dokumentacije može očekivati ​​značajno smanjenje ukupnog projektnog toplinskog opterećenja postojećih potrošača za izvor toplote, te tehnički opravdan način rada sa "prekidanjem" temperaturnog rasporeda za regulaciju sezonskog opterećenja na nivou od 115°C. Potreban stepen stvarnog smanjenja deklarisanog opterećenja sistema grijanja treba odrediti tokom terenskih ispitivanja za potrošače određenog toplovoda. Izračunata temperatura vode povratne mreže također je predmet pojašnjenja tokom terenskih ispitivanja.

Treba imati na umu da kvalitativna regulacija sezonskog opterećenja nije održiva u smislu distribucije toplotne snage među grijaćim uređajima za vertikalno grijanje. jednocevni sistemi grijanje. Dakle, u svim gore navedenim proračunima, uz obezbjeđivanje prosječne projektne temperature zraka u prostorijama, doći će do promjene temperature zraka u prostorijama duž uspona tokom perioda grijanja pri različitim temperaturama vanjskog zraka.

5. Poteškoće u implementaciji normativne razmjene zraka u prostorijama

Razmotrite strukturu troškova toplotne snage sistema grijanja stambene zgrade. Glavne komponente toplotnih gubitaka kompenziranih protokom toplote iz uređaja za grijanje su gubici u prijenosu kroz vanjske ograde, kao i troškovi grijanja vanjskog zraka koji ulazi u prostorije. Potrošnja svježeg zraka za stambene zgrade određena je zahtjevima sanitarno-higijenskih standarda, koji su dati u odjeljku 6.

AT stambene zgrade sistem ventilacije je obično prirodan. Brzina protoka zraka osigurava se povremenim otvaranjem ventilacijskih otvora i prozorskih krila. Istovremeno, treba imati na umu da su od 2000. godine zahtjevi za svojstva toplinske zaštite vanjskih ograda, prvenstveno zidova, značajno porasli (2 ... 3 puta).

Iz prakse izrade energetskih pasoša za stambene zgrade proizilazi da za objekte građene od 50-ih do 80-ih godina prošlog stoljeća u centralnom i sjeverozapadne regije udio toplinske energije za standardnu ​​ventilaciju (infiltraciju) bio je 40...45%, za kasnije izgrađene zgrade 45...55%.

Prije pojave prozora s dvostrukim staklom, regulacija izmjene zraka vršila se ventilacijskim otvorima i krmenicom, a u hladnim danima učestalost njihovog otvaranja se smanjivala. Uz široku upotrebu prozora s dvostrukim staklom, osiguravanje standardne izmjene zraka postalo je još više veći problem. To je zbog desetostrukog smanjenja nekontrolirane infiltracije kroz pukotine i činjenice da se često provjetravanje otvaranjem prozorskih krila, koje jedino može obezbijediti standardnu ​​razmjenu zraka, zapravo i ne događa.

Postoje publikacije na ovu temu, pogledajte, na primjer,. Čak i tokom periodične ventilacije, ne postoje kvantitativni pokazatelji koji ukazuju na razmjenu zraka u prostoriji i njeno poređenje sa standardnom vrijednošću. Kao rezultat toga, zapravo, razmjena zraka je daleko od standarda i javlja se niz problema: povećava se relativna vlažnost, stvara se kondenzacija na staklu, pojavljuje se plijesan, postojanih mirisa, sadržaj se povećava ugljen-dioksid u zraku, što je zajedno dovelo do izraza “sindrom bolesne zgrade”. U nekim slučajevima, zbog naglog smanjenja razmjene zraka, dolazi do razrjeđivanja u prostorijama, što dovodi do prevrtanja kretanja zraka u izduvnim kanalima i do ulaska hladnog zraka u prostorije, protoka prljavog zraka iz jednog stan u drugi, i smrzavanje zidova kanala. Kao rezultat toga, graditelji se suočavaju s problemom korištenja naprednijih ventilacijskih sistema koji mogu uštedjeti troškove grijanja. S tim u vezi, potrebno je koristiti ventilacione sisteme sa kontrolisanim dovodom i odvodom vazduha, sisteme grejanja sa automatska regulacija opskrba toplinom grijaćih uređaja (idealno - sistemi sa stambenim priključkom), zatvoreni prozori i ulazna vrata u stanove.

Potvrda da ventilacioni sistem stambenih zgrada radi sa učinkom koji je znatno manji od projektovanog je niža, u poređenju sa izračunatom potrošnjom toplotne energije u toku grejnog perioda, koju registruju jedinice za merenje toplotne energije zgrada.

Proračun ventilacionog sistema stambene zgrade koji je izvršilo osoblje Državnog politehničkog univerziteta u Sankt Peterburgu pokazao je sljedeće. prirodna ventilacija u režimu slobodnog protoka vazduha, u proseku za godinu, skoro 50% vremena je manje od izračunatog (odeljak izduvni kanal dizajniran prema važećim propisima ventilacija višestambenih stambenih zgrada za uslove Sankt Peterburga za standardnu ​​izmjenu zraka za vanjsku temperaturu od +5°C), u 13% vremena ventilacija je više od 2 puta manja od izračunate, a u 2% vremena nema ventilacije. U značajnom dijelu perioda grijanja, pri temperaturi vanjskog zraka nižoj od +5 °C, ventilacija prelazi standardnu ​​vrijednost. Odnosno, bez posebnog podešavanja na niskim vanjskim temperaturama nemoguće je osigurati standardnu ​​razmjenu zraka; pri vanjskim temperaturama većim od +5 ° C, razmjena zraka će biti niža od standardne ako se ventilator ne koristi.

6. Evolucija regulatornih zahtjeva za razmjenu zraka u zatvorenom prostoru

Troškovi grijanja vanjskog zraka određeni su zahtjevima datim u regulatornoj dokumentaciji, koja je pretrpjela niz promjena tokom dužeg perioda izgradnje objekta.

Razmotrite ove promjene na primjeru stambenih stambenih zgrada.

U SNiP II-L.1-62, dio II, odjeljak L, poglavlje 1, koji je bio na snazi ​​do aprila 1971. godine, stope izmjene zraka za dnevne sobe bile su 3 m 3 / h po 1 m 2 površine prostorije, za kuhinju sa električni štednjaci, brzina izmjene zraka 3, ali ne manje od 60 m 3 / h, za kuhinju sa šporet na plin- 60 m 3 / h za peći sa dva gorionika, 75 m 3 / h - za peći sa tri gorionika, 90 m 3 / h - za peći sa četiri gorionika. Procijenjena temperatura dnevnih soba +18 °S, kuhinja +15 °S.

U SNiP II-L.1-71, dio II, odjeljak L, poglavlje 1, koji je bio na snazi ​​do jula 1986., navedeni su slični standardi, ali za kuhinju s električnim štednjacima isključena je brzina izmjene zraka od 3.

U SNiP 2.08.01-85, koji su bili na snazi ​​do januara 1990. godine, stope izmjene zraka za dnevne sobe bile su 3 m 3 / h po 1 m 2 površine prostorije, za kuhinju bez navođenja vrste ploča 60 m 3 / h. Uprkos različitoj standardnoj temperaturi u stambenim prostorijama iu kuhinji, za proračune toplotne tehnike predlaže se uzimanje unutrašnje temperature vazduha od +18°C.

U SNiP 2.08.01-89, koji su bili na snazi ​​do oktobra 2003. godine, stope izmjene zraka su iste kao u SNiP II-L.1-71, dio II, odjeljak L, poglavlje 1. Indikacija unutrašnje temperature zraka +18 ° SA.

U SNiP 31-01-2003 koji su još uvijek na snazi ​​pojavljuju se novi zahtjevi, dati u 9.2-9.4:

9.2 Projektni parametri vazduh u prostorijama stambene zgrade treba uzimati u skladu sa optimalnim standardima GOST 30494. Stopu razmene vazduha u prostorijama treba uzeti u skladu sa tabelom 9.1.

Tabela 9.1

soba Višestrukost ili veličina

izmjena zraka, m 3 na sat, ne manje

u neradnom u modu

usluga

Spavaća soba, zajednička, dječja soba 0,2 1,0
Biblioteka, kancelarija 0,2 0,5
Ostava, posteljina, garderoba 0,2 0,2
Teretana, sala za bilijar 0,2 80 m 3
Pranje, peglanje, sušenje 0,5 90 m 3
Kuhinja sa električnim štednjakom 0,5 60 m 3
Soba sa opremom na plin 1,0 1,0 + 100 m 3
Soba sa generatorima toplote i pećima na čvrsto gorivo 0,5 1,0 + 100 m 3
Kupatilo, tuš kabina, wc, zajedničko kupatilo 0,5 25 m 3
Sauna 0,5 10 m 3

za 1 osobu

Strojarnica lifta - Po proračunu
Parking 1,0 Po proračunu
Komora za smeće 1,0 1,0

Brzina izmjene zraka u svim ventiliranim prostorijama koje nisu navedene u tabeli u neradnom režimu treba biti najmanje 0,2 zapremine prostorije na sat.

9.3 U toku termotehničkog proračuna ogradnih konstrukcija stambenih zgrada, temperaturu unutrašnjeg vazduha grijanih prostorija treba uzeti kao najmanje 20 °S.

9.4 Sistem grejanja i ventilacije zgrade mora biti projektovan tako da obezbedi da temperatura vazduha u zatvorenom tokom grejne sezone bude unutar optimalni parametri, utvrđen GOST 30494, sa projektnim parametrima vanjskog zraka za odgovarajuća građevinska područja.

Iz ovoga se vidi da se, prvo, pojavljuju koncepti režima održavanja prostorija i neradnog režima, tokom kojih se, po pravilu, nameću vrlo različiti kvantitativni zahtjevi za razmjenu zraka. Za stambene prostore (spavaće sobe, zajedničke prostorije, dječije sobe), koje čine značajan dio površine stana, izmjena zraka je na različiti načini rada razlikuju se 5 puta. Temperaturu vazduha u prostorijama pri proračunu toplotnih gubitaka projektovane zgrade treba uzeti najmanje 20°C. U stambenim prostorijama, frekvencija izmjene zraka je normalizirana, bez obzira na površinu i broj stanovnika.

Ažurirana verzija SP 54.13330.2011 djelimično reproducira informacije SNiP 31-01-2003 u originalnoj verziji. Cijene razmjene zraka za spavaće sobe, zajedničke prostorije, dječje sobe ukupne površine apartmana po osobi manja od 20 m 2 - 3 m 3 / h po 1 m 2 površine sobe; isto kada je ukupna površina stana po osobi veća od 20 m 2 - 30 m 3 / h po osobi, ali ne manja od 0,35 h -1; za kuhinju sa električnim štednjacima 60 m 3 / h, za kuhinju sa plinskim štednjakom 100 m 3 / h.

Stoga je za određivanje prosječne dnevne satne razmjene zraka potrebno zadati trajanje svakog od modova, odrediti protok zraka u različitim prostorijama tokom svakog režima, a zatim izračunati prosječnu satnu potrebu stana za svježi zrak a zatim i kuću u cjelini. Višestruke promjene u razmjeni zraka u određenom stanu tokom dana, na primjer, u odsustvu ljudi u stanu tokom radno vrijeme ili vikendom dovešće do značajne neravnomernosti razmene vazduha tokom dana. Istovremeno, očigledno je da će neistovremeni rad ovih režima u različitim stanovima dovesti do izjednačavanja opterećenja kuće za potrebe ventilacije i do neaditivnog dodavanja ovog opterećenja za različite potrošače.

Moguće je povući analogiju sa neistovremenom upotrebom PTV-a od strane potrošača, što obavezuje uvođenje koeficijenta satne neravnomjernosti prilikom određivanja opterećenja PTV-a za izvor topline. Kao što znate, njegova vrijednost za značajan broj potrošača u regulatornoj dokumentaciji uzeta je jednaka 2,4. Slična vrijednost za ventilacijsku komponentu opterećenja grijanja omogućava nam da pretpostavimo da će se odgovarajuće ukupno opterećenje također zapravo smanjiti za najmanje 2,4 puta zbog neistovremenog otvaranja ventilacijskih otvora i prozora u različitim stambenim zgradama. u javnosti i industrijske zgrade slična slika se uočava s tom razlikom što je u neradno vrijeme ventilacija minimalna i određena je samo infiltracijom kroz nepropusne prozore na krovnim prozorima i vanjskim vratima.

Uzimanje u obzir toplinske inercije zgrada također omogućava fokusiranje na prosječne dnevne vrijednosti potrošnje toplinske energije za grijanje zraka. Štaviše, u većini sistema grijanja ne postoje termostati koji održavaju temperaturu zraka u prostorijama. Takođe je poznato da se centralna kontrola temperature mrežne vode u dovodu za sisteme grijanja vrši prema vanjskoj temperaturi, u prosjeku u periodu od oko 6-12 sati, a ponekad i duže.

Zbog toga je potrebno izvršiti proračune normativne prosječne izmjene zraka za stambene zgrade različitih serija kako bi se razjasnilo proračunsko opterećenje grijanja zgrada. Slične radove treba uraditi i za javne i industrijske zgrade.

Treba napomenuti da se ovi važeći regulatorni dokumenti odnose na novoprojektovane zgrade u smislu projektovanja sistema ventilacije prostorija, ali posredno ne samo da mogu, već bi trebali biti i vodič za postupanje prilikom razjašnjavanja toplotnih opterećenja svih zgrada, uključujući i one koje izgrađeni su prema drugim gore navedenim standardima.

Razvijeni su i objavljeni standardi organizacija kojima se uređuju norme razmjene zraka u prostorijama višestambenih zgrada. Na primjer, STO NPO AVOK 2.1-2008, STO SRO NP SPAS-05-2013, Ušteda energije u zgradama. Proračun i projektovanje ventilacionih sistema za stambene višestambene zgrade (Odobren generalna skupština SRO NP SPAS od 27. marta 2014. godine).

U osnovi, u ovim dokumentima citirani standardi odgovaraju SP 54.13330.2011, uz određena smanjenja pojedinačnih zahtjeva (na primjer, za kuhinju sa plinskim štednjakom, jedna izmjena zraka se ne dodaje na 90 (100) m 3 / h , tokom neradnog vremena u kuhinji ovog tipa dozvoljena je izmjena vazduha 0,5 h -1, dok je u SP 54.13330.2011 - 1,0 h -1).

Referentni dodatak B STO SRO NP SPAS-05-2013 daje primjer izračunavanja potrebne izmjene zraka za trosobni stan.

Početni podaci:

Ukupna površina stana F ukupno \u003d 82,29 m 2;

Površina ​​stambenog prostora F je živjela = 43,42 m 2;

Kuhinjski prostor - F kx \u003d 12,33 m 2;

Površina kupatila - F ext = 2,82 m 2;

Površina toaleta - F ub \u003d 1,11 m 2;

Visina prostorije h = 2,6 m;

Kuhinja ima električni šporet.

Geometrijske karakteristike:

Zapremina grijanih prostorija V = 221,8 m 3;

Zapremina stambenih prostorija V je živjela = 112,9 m 3;

Zapremina kuhinje V kx \u003d 32,1 m 3;

Zapremina toaleta V ub \u003d 2,9 m 3;

Zapremina kupatila V ext = 7,3 m 3.

Iz gornjeg proračuna razmjene zraka slijedi da ventilacijski sistem stana mora osigurati izračunatu razmjenu zraka u režimu održavanja (u projektnom režimu rada) - L tr rad = 110,0 m 3 / h; u stanju mirovanja - L tr slave \u003d 22,6 m 3 / h. Date brzine protoka vazduha odgovaraju stopi razmene vazduha 110,0/221,8=0,5 h -1 za režim održavanja i 22,6/221,8=0,1 h -1 za neradni režim.

Informacije date u ovom odjeljku pokazuju da postoje normativni dokumenti sa različitom popunjenošću stanova, maksimalna brzina izmjene zraka je u rasponu od 0,35 ... 0,5 h -1 prema zagrijanoj zapremini zgrade, u neradnom režimu - na nivou od 0,1 h -1. To znači da se pri određivanju snage sistema grijanja koja kompenzira prijenosne gubitke toplotne energije i troškove grijanja vanjskog zraka, kao i potrošnju vode u mreži za potrebe grijanja, može u prvom približnom smjeru fokusirati na na dnevnu prosječnu vrijednost protoka zraka stambenih višestambenih zgrada 0,35 h - jedan .

Analiza energetskih pasoša stambenih zgrada razvijenih u skladu sa SNiP 23-02-2003 „Toplotna zaštita zgrada“ pokazuje da pri izračunavanju toplotnog opterećenja kuće brzina izmjene zraka odgovara nivou od 0,7 h -1, što je 2 puta veće od gore navedene preporučene vrijednosti, što nije u suprotnosti sa zahtjevima savremenih servisa.

Potrebno je razjasniti toplinsko opterećenje zgrada izgrađenih prema standardni projekti, na osnovu smanjene prosječne vrijednosti razmjene zraka, koja će biti u skladu sa postojećim ruskim standardima i omogućiti približavanje standardima niza zemalja EU i SAD.

7. Obrazloženje za snižavanje grafika temperature

Odjeljak 1 pokazuje da temperaturni graf od 150-70 °C, zbog stvarne nemogućnosti njegove upotrebe u savremenim uslovima, treba sniziti ili modificirati opravdavanjem “granične vrijednosti” temperature.

Navedeni proračuni različitih načina rada sistema za snabdevanje toplotom u vanprojektantnim uslovima omogućavaju nam da predložimo sledeću strategiju za izmenu regulacije toplotnog opterećenja potrošača.

1. Za prelazni period, uvesti temperaturni grafikon od 150-70 °C sa „graničnom granicom“ od 115 °S. Kod ovakvog rasporeda, potrošnju mrežne vode u toplovodnoj mreži za grijanje, ventilaciju potrebno je održavati na trenutnom nivou koji odgovara projektnoj vrijednosti, ili sa blagim prekoračenjem, na osnovu performansi ugrađenih mrežnih pumpi. U rasponu vanjskih temperatura zraka koji odgovara „graničnoj vrijednosti“, uzeti u obzir proračunsko opterećenje grijanja potrošača smanjeno u odnosu na projektnu vrijednost. Smanjenje toplotnog opterećenja pripisuje se smanjenju troškova toplotne energije za ventilaciju, na osnovu obezbeđivanja neophodne prosečne dnevne razmene vazduha stambenih višestambenih zgrada prema savremenim standardima na nivou od 0,35 h -1.

2. Organizovati rad na razjašnjavanju opterećenja sistema grijanja u zgradama izradom energetskih pasoša za stambene zgrade, javne organizacije i preduzeća, vodeći računa prije svega na opterećenje ventilacije zgrada koje je uključeno u opterećenje sistema grijanja, uzimajući u obzir savremene regulatorne zahtjeve za razmjenu zraka u prostorijama. U tu svrhu potrebno je za kuće različitih visina, prvenstveno tipičnih serija, izračunati gubitke topline, kako prijenosne tako i ventilacijske, u skladu sa savremenim zahtjevima regulatorne dokumentacije Ruske Federacije.

3. Na osnovu ispitivanja u punom obimu uzeti u obzir trajanje karakterističnih načina rada ventilacionih sistema i neistovremenost njihovog rada za različite potrošače.

4. Nakon razjašnjenja toplotnih opterećenja sistema za grijanje potrošača, izraditi raspored za regulaciju sezonskog opterećenja od 150-70 °C sa „graničnom“ za 115°S. Mogućnost prelaska na klasični raspored od 115-70 °C bez „prekidanja“ uz kvalitetnu regulaciju treba utvrditi nakon razjašnjenja smanjenih toplinskih opterećenja. Odredite temperaturu vode povratne mreže prilikom izrade smanjenog rasporeda.

5. Preporučiti projektantima, projektantima novih stambenih zgrada i organizacije za popravke izvođenje velikih sanacija starog stambenog fonda, prijava savremeni sistemi ventilaciju, koja omogućava regulaciju razmene vazduha, uključujući i mehaničku sa sistemima za rekuperaciju toplotne energije zagađenog vazduha, kao i uvođenje termostata za podešavanje snage grejnih uređaja.

Književnost

1. Sokolov E.Ya. Toplotne i toplotne mreže, 7. izdanje, M.: Izdavačka kuća MPEI, 2001.

2. Gershkovich V.F. „Sto pedeset... Norma ili bista? Refleksije na parametre rashladnog sredstva…” // Ušteda energije u zgradama. - 2004 - br. 3 (22), Kijev.

3. Unutrašnji sanitarni uređaji. U 15 sati 1. dio Grijanje / V.N. Bogoslovsky, B.A. Krupnov, A.N. Scanavi i drugi; Ed. I.G. Staroverov i Yu.I. Schiller, - 4. izdanje, revidirano. i dodatne - M.: Stroyizdat, 1990. -344 str.: ilustr. – (Priručnik za dizajnera).

4. Samarin O.D. Termofizika. Uštedu energije. Energetska efikasnost / Monografija. M.: Izdavačka kuća DIA, 2011.

6. A.D. Krivoshein, Ušteda energije u zgradama: prozirne strukture i ventilacija prostorija // Arhitektura i izgradnja Omske regije, br. 10 (61), 2008.

7. N.I. Vatin, T.V. Samoplyas “Ventilacijski sistemi za stambene prostore stambenih zgrada”, Sankt Peterburg, 2004.

Podijeli: