Izračunajte temperaturni graf 95 70. Povećanje potrošnje vode u mreži kako bi se osigurala standardna temperatura zraka u prostorijama

dr.sc. Petrushchenkov V.A., Istraživačka laboratorija „Industrijska toplotna energija“, Državni politehnički univerzitet Petra Velikog u Sankt Peterburgu, Sankt Peterburg

1. Problem smanjenja projektnog temperaturnog rasporeda za regulaciju sistema opskrbe toplinom u cijeloj zemlji

Proteklih decenija, u gotovo svim gradovima Ruske Federacije, došlo je do veoma značajnog jaza između stvarnih i projektovanih temperaturnih krivulja za regulaciju sistema za snabdevanje toplotom. Kao što znate, zatvoreni i otvoreni sistemi daljinsko grijanje u gradovima SSSR-a dizajnirani su korištenjem visokokvalitetne regulacije s temperaturnim rasporedom za regulaciju sezonskog opterećenja od 150-70 ° C. Takav temperaturni raspored bio je naširoko korišten i za termoelektrane i za kotlarnice. Ali, već od kraja 70-ih godina dolazi do značajnih temperaturnih odstupanja mrežna voda u stvarnim kontrolnim krivuljama od njihovih projektnih vrijednosti na niske temperature ah vanjski zrak. U projektnim uslovima za temperaturu spoljašnjeg vazduha, temperatura vode u dovodnim toplovodima se smanjila sa 150 °S na 85…115 °S. Snižavanje temperaturnog rasporeda od strane vlasnika toplotnih izvora obično je formalizovano kao rad na projektnom rasporedu od 150-70°C sa „prekidanjem” na niskoj temperaturi od 110…130°S. Pri nižim temperaturama rashladnog sredstva, sistem za snabdevanje toplotom je trebalo da radi prema rasporedu otpreme. Proračunska opravdanja za takav prelaz nisu poznata autoru članka.

Prelazak na niži temperaturni raspored, na primjer, 110-70 °C sa projektnog rasporeda od 150-70 °C, trebao bi povući niz ozbiljnih posljedica, koje su diktirane balansnim energetskim odnosima. U vezi sa smanjenjem procijenjene temperaturne razlike mrežne vode za 2 puta, uz održavanje toplinskog opterećenja grijanja, ventilacije, potrebno je osigurati povećanje potrošnje mrežne vode za ove potrošače također za 2 puta. Odgovarajući gubici tlaka u mrežnoj vodi u mreži grijanja i u opremi za izmjenu topline izvora topline i toplinskih tačaka s kvadratnim zakonom otpora će se povećati za 4 puta. Potrebno povećanje snage mrežnih pumpi trebalo bi se dogoditi 8 puta. Očigledno je da ni propusnost toplotnih mreža projektovanih za raspored od 150-70°C, niti instalirane mrežne pumpe neće omogućiti isporuku rashladne tečnosti potrošačima sa dvostrukim protokom u odnosu na projektovanu vrednost.

S tim u vezi, sasvim je jasno da će, kako bi se osigurao temperaturni raspored od 110-70 °C, ne na papiru, već u stvarnosti, biti potrebna radikalna rekonstrukcija i izvora topline i toplinske mreže sa toplinskim točkama, čiji su troškovi nepodnošljivi za vlasnike sistema za snabdevanje toplotom.

Zabrana upotrebe za toplotne mreže rasporeda regulacije opskrbe toplinom sa „ograničenjem“ po temperaturi, datoj u klauzuli 7.11 SNiP 41-02-2003 “ Mreža grijanja“, nije moglo uticati na raširenu praksu njegove primjene. U ažuriranoj verziji ovog dokumenta, SP 124.13330.2012, režim sa „isključenjem“ temperature uopšte se ne pominje, odnosno ne postoji direktna zabrana ovog načina regulacije. To znači da treba izabrati takve metode sezonske regulacije opterećenja u kojima će se riješiti glavni zadatak - osiguranje normalizirane temperature u prostorijama i normalizirane temperature vode za potrebe opskrbe toplom vodom.

U odobrenu Listu nacionalnih standarda i kodeksa prakse (dijelova takvih standarda i kodeksa prakse), čime se, na obaveznoj osnovi, osigurava usklađenost sa zahtjevima savezni zakon od 30. decembra 2009. br. 384-FZ " Tehnički propis o sigurnosti zgrada i konstrukcija" (Uredba Vlade Ruske Federacije od 26. decembra 2014. br. 1521) uključila je revizije SNiP-a nakon ažuriranja. To znači da je korištenje temperatura "odsjecanja" danas potpuno legalno mjera, kako sa stanovišta Liste nacionalnih standarda i kodeksa pravila, tako i sa stanovišta ažuriranog izdanja profila SNiP „Toplotne mreže“.

Federalni zakon br. 190-FZ od 27. jula 2010. „O snabdijevanju toplotom“, „Pravila i norme tehnički rad stambeni fond" (odobren Uredbom Državnog odbora za izgradnju Ruske Federacije od 27. septembra 2003. br. 170), SO 153-34.20.501-2003 "Pravila za tehnički rad elektrane i mreže Ruske Federacije“ također ne zabranjuju regulaciju sezonskog toplinskog opterećenja s „graničnom“ temperaturom.

U 90-im godinama, dobri razlozi koji su objasnili radikalno smanjenje projektnog temperaturnog rasporeda bili su propadanje toplovodnih mreža, armatura, kompenzatora, kao i nemogućnost obezbeđivanja potrebnih parametara na izvorima toplote zbog stanja oprema za izmjenu toplote. Uprkos velikim količinama radovi na popravci koji se konstantno provodi u toplotnim mrežama i izvorima toplote poslednjih decenija, ovaj razlog ostaje relevantan i danas za značajan deo gotovo svakog sistema snabdevanja toplotom.

Treba napomenuti da u specifikacije za priključenje na mreže grijanja većine izvora topline i dalje se daje projektni temperaturni raspored od 150-70 ° C ili blizu njega. Prilikom koordinacije projekata centralnih i pojedinačnih toplotnih tačaka, neizostavan zahtev vlasnika toplotne mreže je da tokom celog perioda ograniči protok mrežne vode iz dovodnog toplovoda toplotne mreže. period grejanja u strogom skladu sa dizajnom, a ne sa stvarnim rasporedom kontrole temperature.

Trenutno, zemlja masovno razvija sheme opskrbe toplinom za gradove i naselja, u kojima se i projektni rasporedi za regulaciju 150-70 ° C, 130-70 ° C smatraju ne samo relevantnim, već i važećim za 15 godina unaprijed. Istovremeno, ne postoje objašnjenja kako takve rasporede osigurati u praksi, ne postoji jasno opravdanje za mogućnost obezbjeđivanja priključnog toplotnog opterećenja pri niskim spoljnim temperaturama u uslovima realne regulacije sezonskog toplotnog opterećenja.

Takav jaz između deklariranih i stvarnih temperatura nosača topline mreže grijanja je nenormalan i nema nikakve veze s teorijom rada sustava za opskrbu toplinom, datoj, na primjer, u.

U ovim uslovima izuzetno je važno analizirati stvarno stanje sa hidrauličkim režimom rada toplovodnih mreža i sa mikroklimom zagrejanih prostorija pri izračunatoj temperaturi spoljašnjeg vazduha. Stvarna situacija je takva da, i pored značajnog smanjenja temperaturnog rasporeda, uz obezbeđivanje projektnog protoka mrežne vode u toplovodnim sistemima gradova, po pravilu ne dolazi do značajnijeg smanjenja projektnih temperatura u prostorijama, što bi dovode do rezonantnih optužbi vlasnika izvora toplote da ne ispunjavaju svoj glavni zadatak: obezbeđivanje standardnih temperatura u prostorijama. S tim u vezi nameću se sljedeća prirodna pitanja:

1. Šta objašnjava takav skup činjenica?

2. Da li je moguće ne samo objasniti postojeće stanje, već i potkrepiti, na osnovu odredbi zahtjeva modernog normativna dokumentacija, ili „odsjecanje“ temperaturnog grafa na 115°C, ili novog temperaturnog grafikona od 115-70 (60) °C sa kvalitetnom regulacijom sezonskog opterećenja?

Ovaj problem, naravno, stalno privlači svačiju pažnju. Stoga se u periodičnoj štampi pojavljuju publikacije koje daju odgovore na postavljena pitanja i daju preporuke za otklanjanje jaza između projektnih i stvarnih parametara sistema za kontrolu toplinskog opterećenja. U pojedinim gradovima već su poduzete mjere za smanjenje temperaturnog rasporeda i pokušavaju se generalizirati rezultati takvog prijelaza.

Sa naše tačke gledišta, ovaj problem je najistaknutije i najjasnije razmatran u članku Gershkovich V.F. .

Napominje nekoliko izuzetno važnih odredbi, koje su, između ostalog, generalizacija praktičnih radnji za normalizaciju rada sistema za opskrbu toplinom u uvjetima niskotemperaturnog „prekidanja“. Napominje se da praktični pokušaji povećanja potrošnje u mreži kako bi se ona uskladila sa sniženim temperaturnim rasporedom nisu bili uspješni. Oni su, prije, doprinijeli hidrauličnom neusklađenosti toplinske mreže, uslijed čega su troškovi mrežne vode između potrošača preraspodijeljeni nesrazmjerno njihovim toplinskim opterećenjima.

Istovremeno, uz održavanje projektovanog protoka u mreži i smanjenje temperature vode u dovodnoj liniji, čak i pri niskim vanjskim temperaturama, u nekim slučajevima je bilo moguće osigurati temperaturu zraka u prostorijama na prihvatljivom nivou. . Ovu činjenicu autor objašnjava činjenicom da u opterećenju grijanja vrlo značajan dio snage otpada na grijanje svježeg zraka, čime se osigurava normativna izmjena zraka u prostoriji. Prava izmjena zraka u hladnim danima daleko je od normativne vrijednosti, jer se ne može osigurati samo otvaranjem ventilacijskih otvora i krila prozorskih blokova ili prozora s dvostrukim staklima. U članku se naglašava da su ruski standardi za razmjenu zraka nekoliko puta veći od onih u Njemačkoj, Finskoj, Švedskoj i SAD. Napominje se da je u Kijevu sprovedeno smanjenje temperaturnog rasporeda zbog „prekidanja“ sa 150 °C na 115 °C i nije imalo negativnih posljedica. Sličan posao obavljen je u toplovodnim mrežama Kazana i Minska.

Ovaj članak govori o trenutnom stanju Ruski zahtevi normativna dokumentacija o razmjeni vazduha prostorija. Na primjeru modelskih problema sa prosječnim parametrima sistema za opskrbu toplinom određen je utjecaj različitih faktora na njegovo ponašanje pri temperaturi vode u dovodnom vodu od 115 °C u projektnim uvjetima za vanjsku temperaturu, uključujući:

Smanjenje temperature zraka u prostorijama uz održavanje projektovanog protoka vode u mreži;

Povećanje protoka vode u mreži radi održavanja temperature zraka u prostorijama;

Smanjenje snage sistema grijanja smanjenjem izmjene zraka za projektovani protok vode u mreži uz osiguranje izračunate temperature zraka u prostorijama;

Procjena kapaciteta sistema grijanja smanjenjem razmjene zraka za stvarno ostvarivo povećana potrošnja vode u mreži uz obezbeđivanje izračunate temperature vazduha u prostorijama.

2. Početni podaci za analizu

Kao početni podaci, pretpostavlja se da postoji izvor opskrbe toplinom sa dominantnim opterećenjem grijanja i ventilacije, dvocijevna toplovodna mreža, centralno grijanje i ITP, grijači, grijalice, slavine. Vrsta sistema grijanja nije od suštinskog značaja. Pretpostavlja se da projektni parametri svih karika sistema za snabdevanje toplotom obezbeđuju normalan rad sistema za snabdevanje toplotom, odnosno, u prostorijama svih potrošača, projektovana temperatura je podešena na t w.r = 18 °C, podložno temperaturni raspored toplovodne mreže 150-70°C, projektnu vrijednost protoka vode mreže, standardnu ​​razmjenu zraka i kvalitetnu regulaciju sezonskog opterećenja. Izračunata spoljna temperatura vazduha jednaka je prosečnoj temperaturi hladnog petodnevnog perioda sa faktorom sigurnosti 0,92 u trenutku izrade sistema za snabdevanje toplotom. Omjer miješanja čvorovi lifta određen je općeprihvaćenim temperaturnim rasporedom za regulaciju sistema grijanja 95-70 ° C i jednak je 2,2.

Treba napomenuti da je u ažuriranoj verziji SNiP-a „Građevinska klimatologija“ SP 131.13330.2012 za mnoge gradove došlo do povećanja projektne temperature hladnog petodnevnog perioda za nekoliko stepeni u poređenju sa verzijom dokumenta SNiP 23- 01-99.

3. Proračuni režima rada sistema za opskrbu toplinom pri temperaturi vode direktne mreže od 115 °C

Razmatra se rad u novim uslovima sistema za snabdevanje toplotom, nastajao decenijama po savremenim standardima za period izgradnje. Projektni temperaturni raspored za kvalitativnu regulaciju sezonskog opterećenja je 150-70 °S. Smatra se da je u trenutku puštanja u rad sistem za opskrbu toplinom tačno obavljao svoje funkcije.

Kao rezultat analize sistema jednačina koji opisuju procese u svim karikama sistema za snabdevanje toplotom, utvrđeno je njegovo ponašanje na maksimalna temperatura voda u dovodnom vodu 115 °C pri procijenjenoj vanjskoj temperaturi, omjeri miješanja elevatorskih jedinica 2.2.

Jedan od definirajućih parametara analitičke studije je potrošnja mrežne vode za grijanje i ventilaciju. Njegova vrijednost se uzima u sljedećim opcijama:

Projektna vrijednost protoka u skladu s rasporedom 150-70 ° C i deklarirano opterećenje grijanja, ventilacije;

Vrijednost protoka, koji obezbjeđuje projektnu temperaturu zraka u prostorijama prema projektnim uvjetima za temperaturu vanjskog zraka;

Stvarna maksimalna moguća vrijednost protoka vode u mreži, uzimajući u obzir instalirane mrežne pumpe.

3.1. Smanjenje temperature zraka u prostorijama uz održavanje povezanih toplinskih opterećenja

Odredite kako se promijeniti prosječna temperatura u prostorijama na temperaturi mrežne vode u dovodnom vodu t o 1 = 115 °C, projektna potrošnja vode iz mreže za grijanje (pretpostavit ćemo da je cjelokupno opterećenje grijanje, budući da je ventilacijsko opterećenje istog tipa), na osnovu projektni raspored 150-70 °C, pri vanjskoj temperaturi t n.o = -25 °S. Smatramo da su na svim čvorovima elevatora koeficijenti miješanja u izračunati i jednaki

Za projektovane uslove rada sistema za snabdevanje toplotom ( , , , ) važi sledeći sistem jednačina:

gdje je prosječna vrijednost koeficijenta prijenosa topline svih grijaćih uređaja sa ukupnom površinom izmjene topline F, je prosjek temperaturna razlika između rashladnog sredstva uređaja za grijanje i temperature zraka u prostorijama, G o - procijenjeni protok vode iz mreže koja ulazi u čvorove lifta, G p - procijenjeni protok vode koja ulazi u uređaje za grijanje, G p = (1 + u) G o, s - specifični maseni izobarični toplotni kapacitet vode, - prosječna projektna vrijednost koeficijenta prijenosa topline zgrade, uzimajući u obzir transport toplinske energije kroz vanjske ograde ukupne površine A i cijenu toplinske energije energije za grijanje standardni protok vanjski zrak.

Pri niskoj temperaturi mrežne vode u dovodnom vodu t o 1 =115 ° C, uz održavanje projektovane izmjene zraka, prosječna temperatura zraka u prostorijama opada na vrijednost t in. Odgovarajući sistem jednadžbe za projektne uslove za vanjski zrak imat će oblik

, (3)

gdje je n eksponent u ovisnosti kriterija koeficijenta prijenosa topline uređaja za grijanje na prosječnu temperaturnu razliku, vidi tabelu. 9.2, str.44. Za najčešće grijaće uređaje u obliku lijevanog željeza sekcijski radijatori i čelične panelne konvektore tipa RSV i RSG kada se rashladno sredstvo kreće odozgo prema dolje n=0,3.

Hajde da uvedemo notaciju , , .

Iz (1)-(3) slijedi sistem jednačina

,

,

čija rješenja izgledaju ovako:

, (4)

(5)

. (6)

Za date projektne vrijednosti parametara sistema za opskrbu toplinom

,

Jednadžba (5), uzimajući u obzir (3) za datu temperaturu direktne vode u projektnim uslovima, omogućava nam da dobijemo omjer za određivanje temperature zraka u prostorijama:

Rješenje ove jednačine je t in =8,7°C.

Relativno toplotna snaga sistem grijanja je

Dakle, kada se temperatura vode u direktnoj mreži promijeni sa 150 °C na 115 °C, prosječna temperatura zraka u prostorijama opada sa 18 °C na 8,7 °C, toplinska snaga sistema grijanja opada za 21,6%.

Izračunate vrijednosti temperatura vode u sistemu grijanja za prihvaćeno odstupanje od temperaturnog rasporeda su °S, °S.

Izvršeni proračun odgovara slučaju kada protok spoljašnjeg vazduha tokom rada sistema za ventilaciju i infiltraciju odgovara projektnim standardnim vrednostima do temperature spoljašnjeg vazduha t n.o = -25°C. Budući da se u stambenim zgradama po pravilu koristi prirodna ventilacija, koju stanovnici organiziraju kada ventiliraju pomoću ventilacijskih otvora, prozorskih krila i mikro-ventilacijskih sistema za prozore s dvostrukim staklom, može se tvrditi da pri niskim vanjskim temperaturama protok stopa hladnog zraka koji ulazi u prostorije, posebno nakon praktic potpuna zamjena prozorski blokovi na prozorima s dvostrukim staklom daleko su od normativne vrijednosti. Stoga je temperatura zraka u stambenim prostorijama zapravo mnogo viša od određene vrijednosti t in = 8,7 °C.

3.2 Određivanje snage sistema grijanja smanjenjem ventilacije unutrašnjeg zraka pri procijenjenom protoku vode iz mreže

Utvrdimo koliko je potrebno smanjiti troškove toplinske energije za ventilaciju u razmatranom ne-projektom načinu rada niske temperature mrežnu vodu toplinske mreže tako da prosječna temperatura zraka u prostorijama ostane na standardnom nivou, odnosno t u \u003d t w.r \u003d 18 °C.

Sistem jednačina koje opisuju proces rada sistema za snabdevanje toplotom u ovim uslovima će imati oblik

Zajedničko rješenje (2') sa sistemima (1) i (3) slično kao u prethodnom slučaju daje sljedeće relacije za temperature različitih tokova vode:

,

,

.

Jednadžba za datu temperaturu direktne vode u projektnim uslovima za vanjsku temperaturu omogućava da se pronađe smanjeno relativno opterećenje sustava grijanja (smanjena je samo snaga ventilacionog sistema, prijenos topline kroz vanjske ograde je tačno očuvan ):

Rješenje ove jednačine je =0,706.

Dakle, kada se temperatura vode u direktnoj mreži promeni sa 150°C na 115°C, moguće je održavanje temperature vazduha u prostorijama na nivou od 18°C ​​smanjenjem ukupne toplotne snage sistema grejanja na 0,706 projektne vrijednosti smanjenjem troškova grijanja vanjskog zraka. Toplotna snaga sistema grijanja opada za 29,4%.

Izračunate vrijednosti temperatura vode za prihvaćeno odstupanje od temperaturnog grafa jednake su °S, °S.

3.4 Povećanje potrošnje vode u mreži kako bi se osigurala standardna temperatura zraka u prostorijama

Odredimo kako bi se potrošnja mrežne vode u toplinskoj mreži za potrebe grijanja trebala povećati kada temperatura vode u mreži u dovodnom vodu padne na 1 = 115 ° C u projektnim uvjetima za vanjsku temperaturu t n.o \u003d -25 ° C, tako da je prosječna temperatura zraka u prostorijama ostala na normativnom nivou, odnosno t u \u003d t w.r \u003d 18 °C. Ventilacija prostorija odgovara projektnoj vrijednosti.

Sistem jednadžbi koje opisuju proces rada sistema za snabdevanje toplotom, u ovom slučaju će imati oblik, uzimajući u obzir povećanje vrednosti protoka vode mreže do G o y i protoka vode kroz sistem grijanja G pu =G oh (1 + u) sa konstantnom vrijednošću koeficijenta miješanja čvorova lifta u= 2,2. Radi jasnoće, reprodukujemo u ovom sistemu jednačine (1)

.

Iz (1), (2”), (3’) slijedi sistem jednadžbi srednjeg oblika

Rješenje datog sistema ima oblik:

° C, t o 2 \u003d 76,5 ° C,

Dakle, kada se temperatura vode u direktnoj mreži promeni sa 150 °C na 115 °C, održavanje prosečne temperature vazduha u prostorijama na nivou od 18 °C moguće je povećanjem potrošnje mrežne vode u dovodu (povratu) linija toplovodne mreže za potrebe sistema grijanja i ventilacije u 2 ,08 puta.

Očigledno je da ne postoji takva rezerva u pogledu potrošnje vode u mreži kako na izvorima toplote tako i na pumpne stanice ako je dostupno. Osim toga, tako veliko uvećanje potrošnja vode u mreži dovešće do povećanja gubitaka pritiska usled trenja u cevovodima toplovodne mreže i u opremi grejnih mesta i izvora toplote za više od 4 puta, što se ne može realizovati zbog nedostatka snabdevanja mrežnih pumpi. u smislu pritiska i snage motora. Posljedično, povećanje potrošnje vode u mreži za 2,08 puta samo zbog povećanja broja instaliranih mrežnih pumpi, uz održavanje njihovog pritiska, neminovno će dovesti do nezadovoljavajućeg rada elevatorskih jedinica i izmjenjivača topline na većini grijnih mjesta toplinske energije. sistem snabdevanja.

3.5 Smanjenje snage sistema grejanja smanjenjem ventilacije unutrašnjeg vazduha u uslovima povećane potrošnje vode iz mreže

Za neke izvore topline može se obezbijediti potrošnja mrežne vode u mreži više od projektne vrijednosti za desetine posto. To je zbog smanjenja toplinskih opterećenja do kojih je došlo posljednjih decenija, kao i zbog prisustva određene rezerve performansi instaliranih mrežnih pumpi. Uzmimo maksimalnu relativnu vrijednost potrošnje vode u mreži jednaku =1,35 projektne vrijednosti. Uzimamo u obzir i moguće povećanje izračunate vanjske temperature zraka prema SP 131.13330.2012.

Odredite koliko ćete smanjiti prosječna potrošnja spoljni vazduh za ventilaciju prostorija u režimu snižene temperature mrežne vode toplovodne mreže, tako da prosečna temperatura vazduha u prostorijama ostane na standardnom nivou, odnosno t in = 18°C.

Za nisku temperaturu mrežne vode u dovodnom vodu t o 1 = 115 °C smanjuje se protok zraka u prostorijama kako bi se održala izračunata vrijednost t na = 18 °C u uslovima povećanja protoka mreže. vode za 1,35 puta i povećanje izračunate temperature hladnog petodnevnog perioda. Odgovarajući sistem jednačina za nove uslove imaće oblik

Relativno smanjenje toplotne snage sistema grijanja je jednako

. (3’’)

Iz (1), (2''), (3'') slijedi rješenje

,

,

.

Za date vrijednosti parametara sistema za opskrbu toplinom i = 1,35:

; =115 °S; =66 °S; \u003d 81,3 ° C.

Uzimamo u obzir i porast temperature hladnog petodnevnog perioda na vrijednost t n.o_ = -22 °C. Relativna toplotna snaga sistema grejanja je jednaka

Relativna promjena ukupnih koeficijenata prolaza topline jednaka je i zbog smanjenja brzine protoka zraka ventilacionog sistema.

Za kuće izgrađene prije 2000. godine, udio potrošnje toplinske energije za ventilaciju prostorija u centralnim regijama Ruske Federacije iznosi 40 ... .

Za kuće izgrađene nakon 2000. godine, udio troškova ventilacije povećava se na 50 ... 55%, pad brzine protoka zraka ventilacijskog sistema za približno 1,3 puta će održati izračunatu temperaturu zraka u prostorijama.

Iznad u 3.2 prikazano je da sa projektnim vrijednostima protoka vode u mreži, temperature unutrašnjeg zraka i projektne vanjske temperature zraka, smanjenje temperature vode u mreži na 115°C odgovara relativnoj snazi ​​sistema grijanja od 0,709 . Ako se ovo smanjenje snage pripiše smanjenju grijanja ventilacionog zraka, onda bi za kuće izgrađene prije 2000. godine protok zraka ventilacionog sistema prostorija trebao pasti za približno 3,2 puta, za kuće izgrađene nakon 2000. godine - za 2,3 puta.

Analiza mjernih podataka sa mjernih jedinica toplinske energije pojedinačnih stambenih zgrada pokazuje da smanjenje potrošnje toplinske energije u hladnim danima odgovara smanjenju standardne izmjene zraka za faktor 2,5 ili više.

4. Potreba za pojašnjavanjem izračunatog toplotnog opterećenja sistema za snabdevanje toplotom

Neka deklarisano opterećenje sistema grijanja stvorenog posljednjih decenija bude . Ovo opterećenje odgovara projektnoj temperaturi vanjskog zraka, relevantnoj u periodu izgradnje, uzetoj za određenost t n.o = -25 °C.

U nastavku slijedi procjena stvarnog smanjenja navedenog procijenjenog opterećenje grijanja uzrokovane uticajem različitih faktora.

Povećanje izračunate vanjske temperature zraka na -22 °S smanjuje se projektno opterećenje grijanje na vrijednost (18+22)/(18+25)h100%=93%.

Osim toga, sljedeći faktori dovode do smanjenja izračunatog opterećenja grijanja.

1. Zamjena prozorskih blokova sa dvostrukim staklima, koja se odvijala skoro svuda. Udio prijenosnih gubitaka toplinske energije kroz prozore iznosi oko 20% ukupnog grijnog opterećenja. Zamjena prozorskih blokova s ​​dvostrukim staklima dovela je do povećanja toplinskog otpora sa 0,3 na 0,4 m 2 ∙K / W, odnosno, toplinska snaga gubitka topline smanjena je na vrijednost: x100% \u003d 93,3%.

2. Za stambene zgrade, udio ventilacionog opterećenja u opterećenju grijanja u projektima završenim prije početka 2000-ih je oko 40...45%, kasnije - oko 50...55%. Uzmimo prosječan udio ventilacijske komponente u opterećenju grijanja u iznosu od 45% deklariranog grijnog opterećenja. To odgovara stopi razmjene zraka od 1,0. By savremenim standardima STO maksimalna brzina razmene vazduha je na nivou od 0,5, prosečna dnevna razmena vazduha za stambenu zgradu je na nivou od 0,35. Dakle, smanjenje brzine izmjene zraka sa 1,0 na 0,35 dovodi do pada opterećenja grijanja stambene zgrade na vrijednost:

x100%=70,75%.

3. Opterećenje ventilacije od strane različitih potrošača zahtijeva se nasumično, stoga, kao i opterećenje PTV-a za izvor topline, njegova vrijednost se ne sumira aditivno, već uzimajući u obzir koeficijente satne neravnomjernosti. dijeliti maksimalno opterećenje ventilacija kao dio deklarisanog toplinskog opterećenja iznosi 0,45x0,5/1,0=0,225 (22,5%). Koeficijent satne neujednačenosti je procijenjen na isti kao i za snabdijevanje toplom vodom, jednak K sat.vent = 2,4. Dakle, ukupno opterećenje sistema grijanja za izvor topline, uzimajući u obzir smanjenje maksimalnog opterećenja ventilacije, zamjenu prozorskih blokova sa dvostrukim staklima i neistovremenu potražnju za ventilacijskim opterećenjem, bit će 0,933x( 0,55+0,225/2,4)x100%=60,1% deklarisanog opterećenja.

4. Uzimanje u obzir povećanja projektne vanjske temperature će dovesti do još većeg pada projektnog opterećenja grijanja.

5. Izvršene procjene pokazuju da pojašnjenje toplotnog opterećenja sistema grijanja može dovesti do njegovog smanjenja za 30 ... 40%. Ovakvo smanjenje toplotnog opterećenja omogućava nam da očekujemo da se, uz zadržavanje projektovanog protoka vode iz mreže, izračunata temperatura vazduha u prostorijama može obezbediti primenom „ograničenja“ direktne temperature vode na 115 °C za nisku spoljašnju temperaturu. temperature vazduha (vidi rezultate 3.2). Ovo se može sa još većim razlogom tvrditi ako postoji rezerva u vrijednosti potrošnje vode u mreži na izvoru topline sistema za opskrbu toplinom (vidi rezultate 3.4).

Navedene procjene su ilustrativne, ali iz njih proizilazi da se na osnovu savremenih zahtjeva regulatorne dokumentacije može očekivati ​​značajno smanjenje ukupnog projektnog toplinskog opterećenja postojećih potrošača za izvor toplote, te tehnički opravdan način rada sa "prekidanjem" temperaturnog rasporeda za regulaciju sezonskog opterećenja na nivou od 115°C. Potreban stepen stvarnog smanjenja deklarisanog opterećenja sistema grijanja treba odrediti tokom terenskih ispitivanja za potrošače određenog toplovoda. Izračunata temperatura vode povratne mreže također je predmet pojašnjenja tokom terenskih ispitivanja.

Treba imati na umu da kvalitativna regulacija sezonskog opterećenja nije održiva u smislu distribucije toplotne snage među grijaćim uređajima za vertikalno grijanje. jednocevni sistemi grijanje. Dakle, u svim gore navedenim proračunima, uz obezbjeđivanje prosječne projektne temperature zraka u prostorijama, doći će do promjene temperature zraka u prostorijama duž uspona tokom perioda grijanja pri različitim temperaturama vanjskog zraka.

5. Poteškoće u implementaciji normativne razmjene zraka u prostorijama

Razmotrite strukturu troškova toplotne snage sistema grijanja stambene zgrade. Glavne komponente toplotnih gubitaka nadoknađenih protokom toplote iz uređaja za grijanje su gubici u prijenosu kroz vanjske ograde, kao i troškovi grijanja vanjskog zraka koji ulazi u prostorije. Potrošnja svježeg zraka za stambene zgrade određena je zahtjevima sanitarno-higijenskih standarda, koji su dati u odjeljku 6.

AT stambene zgrade Sistem ventilacije je obično prirodan. Brzina protoka vazduha je obezbeđena periodičnim otvaranjem ventilacionih otvora i prozorskih krila. Istovremeno, treba imati na umu da su od 2000. godine zahtjevi za toplinskom zaštitom vanjskih ograda, prije svega zidova, značajno povećani (za 2-3 puta).

Iz prakse izrade energetskih pasoša za stambene zgrade proizilazi da za objekte građene od 50-ih do 80-ih godina prošlog vijeka u centralnom i sjeverozapadne regije udio toplinske energije za standardnu ​​ventilaciju (infiltraciju) bio je 40...45%, za kasnije izgrađene zgrade 45...55%.

Prije pojave prozora s dvostrukim staklom, izmjena zraka je regulirana ventilacijskim otvorima i krmenicom, a u hladnim danima učestalost njihovog otvaranja se smanjivala. Uz široku upotrebu prozora s dvostrukim staklom, osiguravanje standardne izmjene zraka postalo je još više veći problem. To je zbog desetostrukog smanjenja nekontrolirane infiltracije kroz pukotine i činjenice da se često provjetravanje otvaranjem prozorskih krila, koje jedino može obezbijediti standardnu ​​razmjenu zraka, zapravo i ne događa.

Postoje publikacije na ovu temu, pogledajte, na primjer,. Čak i tokom periodične ventilacije, ne postoje kvantitativni pokazatelji koji ukazuju na razmjenu zraka u prostoriji i njeno poređenje sa standardnom vrijednošću. Kao rezultat toga, u stvari, razmjena zraka je daleko od normativne i javlja se niz problema: relativna vlažnost, stvara se kondenzacija na staklima, pojavljuje se plijesan, pojavljuju se postojani mirisi, povećava se sadržaj ugljičnog dioksida u zraku, što je zajedno dovelo do pojave pojma „sindrom bolesne zgrade“. U nekim slučajevima, zbog naglog smanjenja razmjene zraka, dolazi do razrjeđivanja u prostorijama, što dovodi do prevrtanja kretanja zraka u izduvnim kanalima i do ulaska hladnog zraka u prostorije, protoka prljavog zraka iz jednog stan u drugi, i smrzavanje zidova kanala. Kao rezultat toga, graditelji se suočavaju s problemom korištenja naprednijih ventilacijskih sistema koji mogu uštedjeti troškove grijanja. S tim u vezi, potrebno je koristiti ventilacione sisteme sa kontrolisanim dovodom i odvodom vazduha, sisteme grejanja sa automatska regulacija dovod topline na uređaje za grijanje (idealno - sistemi sa priključkom na stan), zaptivene prozore i ulazna vrata do stanova.

Potvrda da ventilacioni sistem stambenih zgrada radi sa učinkom koji je znatno manji od projektovanog je niža, u poređenju sa izračunatom potrošnjom toplotne energije u toku grejnog perioda, koju registruju jedinice za merenje toplotne energije zgrada.

Proračun ventilacionog sistema stambene zgrade koji je izvršilo osoblje Državnog politehničkog univerziteta u Sankt Peterburgu pokazao je sljedeće. prirodna ventilacija u režimu slobodnog protoka vazduha, u proseku za godinu, skoro 50% vremena je manje od izračunatog (odeljak izduvni kanal dizajniran prema važećim propisima ventilacija višestambenih stambenih zgrada za uslove Sankt Peterburga za standardnu ​​izmjenu zraka za vanjska temperatura+5 °C), u 13% vremena ventilacija je više od 2 puta manja od izračunate, a u 2% vremena ventilacije nema. U značajnom dijelu perioda grijanja, kada je temperatura vanjskog zraka niža od +5 °C, ventilacija prelazi standardnu ​​vrijednost. Odnosno, bez posebnog podešavanja na niskim vanjskim temperaturama nemoguće je osigurati standardnu ​​razmjenu zraka; pri vanjskim temperaturama većim od +5 ° C, razmjena zraka će biti niža od standardne ako se ventilator ne koristi.

6. Evolucija regulatornih zahtjeva za razmjenu zraka u zatvorenom prostoru

Troškovi grijanja vanjskog zraka određeni su zahtjevima datim u regulatornoj dokumentaciji, koja je tokom dužeg perioda izgradnje objekta pretrpjela niz promjena.

Razmotrite ove promjene na primjeru stambenog prostora stambene zgrade.

U SNiP II-L.1-62, dio II, odjeljak L, poglavlje 1, na snazi ​​do aprila 1971. godine, kursevi razmjene zraka za dnevne sobe iznosili su 3 m 3 / h po 1 m 2 površine prostorije, za kuhinju sa električnim štednjacima, brzina izmjene zraka je 3, ali ne manje od 60 m 3 / h, za kuhinju sa šporet na plin- 60 m 3 / h za peći sa dva gorionika, 75 m 3 / h - za peći sa tri gorionika, 90 m 3 / h - za peći sa četiri gorionika. Procijenjena temperatura dnevnih soba +18 °S, kuhinja +15 °S.

U SNiP II-L.1-71, dio II, odjeljak L, poglavlje 1, koji je bio na snazi ​​do jula 1986., navedeni su slični standardi, ali za kuhinju s električnim štednjacima isključena je brzina izmjene zraka od 3.

U SNiP 2.08.01-85, koji su bili na snazi ​​do januara 1990. godine, stope izmjene zraka za dnevne sobe bile su 3 m 3 / h po 1 m 2 površine prostorije, za kuhinju bez navođenja vrste ploča 60 m 3 / h. Unatoč različitoj standardnoj temperaturi u stambenim prostorijama iu kuhinji, predlaže se mjerenje temperature unutrašnji vazduh+18°S.

U SNiP 2.08.01-89, koji su bili na snazi ​​do oktobra 2003. godine, stope izmjene zraka su iste kao u SNiP II-L.1-71, dio II, odjeljak L, poglavlje 1. Indikacija unutrašnje temperature zraka +18 ° SA.

U SNiP 31-01-2003 koji su još uvijek na snazi ​​pojavljuju se novi zahtjevi, dati u 9.2-9.4:

9.2 Projektni parametri vazduh u prostorijama stambene zgrade treba uzimati u skladu sa optimalnim standardima GOST 30494. Stopu razmene vazduha u prostorijama treba uzeti u skladu sa tabelom 9.1.

Tabela 9.1

soba Višestrukost ili veličina

izmjena zraka, m 3 na sat, ne manje

u neradnom u modu

usluga

Spavaća soba, zajednička, dječja soba 0,2 1,0
Biblioteka, kancelarija 0,2 0,5
Ostava, posteljina, garderoba 0,2 0,2
Teretana, sala za bilijar 0,2 80 m 3
Pranje, peglanje, sušenje 0,5 90 m 3
Kuhinja sa električnim štednjakom 0,5 60 m 3
Soba sa opremom na plin 1,0 1,0 + 100 m 3
Soba sa generatorima toplote i pećima na čvrsto gorivo 0,5 1,0 + 100 m 3
Kupatilo, tuš kabina, wc, zajedničko kupatilo 0,5 25 m 3
Sauna 0,5 10 m 3

za 1 osobu

Strojarnica lifta - Po proračunu
Parking 1,0 Po proračunu
Komora za smeće 1,0 1,0

Brzina izmjene zraka u svim ventiliranim prostorijama koje nisu navedene u tabeli u neradnom režimu treba biti najmanje 0,2 zapremine prostorije na sat.

9.3 U toku termotehničkog proračuna ogradnih konstrukcija stambenih zgrada, temperaturu unutrašnjeg vazduha grijanih prostorija treba uzeti na najmanje 20 °C.

9.4 Sistem grejanja i ventilacije zgrade treba da bude projektovan tako da obezbedi da temperatura unutrašnjeg vazduha tokom perioda grejanja bude unutar optimalnih parametara utvrđenih GOST 30494, sa projektnim parametrima spoljašnjeg vazduha za odgovarajuća građevinska područja.

Iz ovoga se vidi da se, prvo, pojavljuju koncepti režima održavanja prostorija i neradnog režima, tokom kojih se, po pravilu, nameću vrlo različiti kvantitativni zahtjevi za razmjenu zraka. Za stambene prostore (spavaće sobe, zajedničke prostorije, dječije sobe), koje čine značajan dio površine stana, izmjena zraka je na različiti načini rada razlikuju se 5 puta. Temperaturu vazduha u prostorijama pri proračunu toplotnih gubitaka projektovane zgrade treba uzeti najmanje 20°C. U stambenim prostorijama, frekvencija izmjene zraka je normalizirana, bez obzira na površinu i broj stanovnika.

Ažurirana verzija SP 54.13330.2011 djelimično reproducira informacije SNiP 31-01-2003 u originalnoj verziji. Cijene razmjene zraka za spavaće sobe, zajedničke prostorije, dječje sobe ukupne površine apartmana po osobi manja od 20 m 2 - 3 m 3 / h po 1 m 2 površine sobe; isto kada je ukupna površina stana po osobi veća od 20 m 2 - 30 m 3 / h po osobi, ali ne manja od 0,35 h -1; za kuhinju sa električnim štednjacima 60 m 3 / h, za kuhinju sa plinskim štednjakom 100 m 3 / h.

Stoga, da bi se odredila prosječna dnevna satna razmjena zraka, potrebno je dodijeliti trajanje svakog od načina rada, odrediti protok zraka u različite sobe tokom svakog režima i zatim izračunati prosječnu satnu potrebu stana za svježi zrak a zatim i kuću u cjelini. Višestruke promjene u razmjeni zraka u određenom stanu tokom dana, na primjer, u odsustvu ljudi u stanu tokom radno vrijeme ili vikendom dovešće do značajne neravnomernosti razmene vazduha tokom dana. Istovremeno, očigledno je da će neistovremeni rad ovih režima u različitim stanovima dovesti do izjednačavanja opterećenja kuće za potrebe ventilacije i do neaditivnog dodavanja ovog opterećenja za različite potrošače.

Moguće je povući analogiju sa neistovremenom upotrebom PTV-a od strane potrošača, što obavezuje uvođenje koeficijenta satne neravnomjernosti prilikom određivanja opterećenja PTV-a za izvor topline. Kao što znate, njegova vrijednost za značajan broj potrošača u regulatornoj dokumentaciji uzeta je jednaka 2,4. Slična vrijednost za ventilacijsku komponentu opterećenja grijanja omogućava nam da pretpostavimo da će se odgovarajuće ukupno opterećenje također zapravo smanjiti za najmanje 2,4 puta zbog neistovremenog otvaranja ventilacijskih otvora i prozora u različitim stambenim zgradama. U javnim i industrijskim zgradama uočava se slična slika s tom razlikom što je u neradno vrijeme ventilacija minimalna i određena je samo infiltracijom kroz nepropusne prozore na krovnim prozorima i vanjskim vratima.

Uzimanje u obzir toplinske inercije zgrada također omogućava fokusiranje na prosječne dnevne vrijednosti potrošnje toplinske energije za grijanje zraka. Štaviše, u većini sistema grijanja ne postoje termostati koji održavaju temperaturu zraka u prostorijama. Takođe je poznato da se centralna kontrola temperature mrežne vode u dovodu za sisteme grijanja vrši prema vanjskoj temperaturi, u prosjeku u periodu od oko 6-12 sati, a ponekad i duže.

Zbog toga je potrebno izvršiti proračune normativne prosječne izmjene zraka za stambene zgrade različitih serija kako bi se razjasnilo proračunsko opterećenje grijanja zgrada. Slične radove treba uraditi i za javne i industrijske zgrade.

Treba napomenuti da se ovi važeći regulatorni dokumenti odnose na novoprojektovane zgrade u smislu projektovanja sistema ventilacije prostorija, ali posredno ne samo da mogu, već bi trebali biti i vodič za postupanje prilikom razjašnjavanja toplotnih opterećenja svih zgrada, uključujući i one koje izgrađeni su prema drugim gore navedenim standardima.

Razvijeni su i objavljeni standardi organizacija kojima se uređuju norme razmjene zraka u prostorijama višestambenih zgrada. Na primjer, STO NPO AVOK 2.1-2008, STO SRO NP SPAS-05-2013, Ušteda energije u zgradama. Proračun i projektovanje ventilacionih sistema za stambene višestambene zgrade (Odobreno na skupštini SRO NP SPAS od 27.03.2014.).

U osnovi, u ovim dokumentima citirani standardi odgovaraju SP 54.13330.2011, uz određena smanjenja pojedinačnih zahtjeva (na primjer, za kuhinju sa plinskim štednjakom, jedna izmjena zraka se ne dodaje na 90 (100) m 3 / h , tokom neradnog vremena u kuhinji ovog tipa dozvoljena je izmjena vazduha 0,5 h -1, dok je u SP 54.13330.2011 - 1,0 h -1).

Referentni dodatak B STO SRO NP SPAS-05-2013 daje primjer izračunavanja potrebne izmjene zraka za trosobni stan.

Početni podaci:

Ukupna površina stana F ukupno \u003d 82,29 m 2;

Površina ​​stambenog prostora F je živjela = 43,42 m 2;

Kuhinjski prostor - F kx \u003d 12,33 m 2;

Površina kupatila - F ext = 2,82 m 2;

Površina toaleta - F ub \u003d 1,11 m 2;

Visina prostorije h = 2,6 m;

Kuhinja ima električni šporet.

Geometrijske karakteristike:

Zapremina grijanih prostorija V = 221,8 m 3;

Zapremina stambenih prostorija V je živjela = 112,9 m 3;

Zapremina kuhinje V kx \u003d 32,1 m 3;

Zapremina toaleta V ub \u003d 2,9 m 3;

Zapremina kupatila V ext = 7,3 m 3.

Iz gornjeg proračuna razmjene zraka slijedi da ventilacijski sistem stana mora osigurati izračunatu razmjenu zraka u režimu održavanja (u projektnom režimu rada) - L tr rad = 110,0 m 3 / h; u stanju mirovanja - L tr slave \u003d 22,6 m 3 / h. Date brzine protoka vazduha odgovaraju stopi razmene vazduha 110,0/221,8=0,5 h -1 za režim održavanja i 22,6/221,8=0,1 h -1 za neradni režim.

Informacije date u ovom odjeljku pokazuju da postoje normativni dokumenti sa različitom popunjenošću stanova, maksimalna brzina izmjene zraka je u rasponu od 0,35 ... 0,5 h -1 prema zagrijanoj zapremini zgrade, u neradnom režimu - na nivou od 0,1 h -1. To znači da se pri određivanju snage sistema grijanja koja kompenzira prijenosne gubitke toplotne energije i troškove grijanja vanjskog zraka, kao i potrošnju vode u mreži za potrebe grijanja, može u prvom približnom smjeru fokusirati na na dnevnu prosječnu vrijednost protoka zraka stambenih višestambenih zgrada 0,35 h - jedan .

Analiza energetskih pasoša stambenih zgrada razvijenih u skladu sa SNiP 23-02-2003 „Toplotna zaštita zgrada“ pokazuje da pri izračunavanju toplotnog opterećenja kuće brzina izmjene zraka odgovara nivou od 0,7 h -1, što je 2 puta veće od gore navedene preporučene vrijednosti, što nije u suprotnosti sa zahtjevima savremenih servisa.

Potrebno je razjasniti toplinsko opterećenje zgrada izgrađenih prema tipskim projektima, na osnovu smanjene prosječne vrijednosti razmjene zraka, koja će odgovarati postojećim Ruski standardi i omogućiće vam da se približite normama brojnih zemalja EU i Sjedinjenih Država.

7. Obrazloženje za snižavanje grafika temperature

Odjeljak 1 pokazuje da je temperaturni graf od 150-70 °C zbog stvarne nemogućnosti njegove upotrebe u savremeni uslovi mora se sniziti ili modificirati opravdavanjem “granične vrijednosti” u smislu temperature.

Navedeni proračuni različitih načina rada sistema za snabdevanje toplotom u vanprojektantnim uslovima omogućavaju nam da predložimo sledeću strategiju za izmenu regulacije toplotnog opterećenja potrošača.

1. Za prelazni period uvedite temperaturni grafikon od 150-70 °C sa „graničnom granicom“ od 115 °S. Kod ovakvog rasporeda, potrošnju mrežne vode u toplovodnoj mreži za grijanje, ventilaciju potrebno je održavati na trenutnom nivou koji odgovara projektnoj vrijednosti, ili sa blagim prekoračenjem, na osnovu performansi ugrađenih mrežnih pumpi. U rasponu vanjskih temperatura zraka koji odgovara „graničnoj vrijednosti“, uzeti u obzir proračunsko opterećenje grijanja potrošača smanjeno u odnosu na projektnu vrijednost. Smanjenje toplotnog opterećenja pripisuje se smanjenju troškova toplotne energije za ventilaciju, na osnovu obezbeđivanja neophodne prosečne dnevne razmene vazduha stambenih višestambenih zgrada prema savremenim standardima na nivou od 0,35 h -1.

2. Organizovati rad na razjašnjavanju opterećenja sistema grijanja zgrada izradom energetskih pasoša za stambene zgrade, javne organizacije i preduzeća, obraćajući pažnju, pre svega, na ventilaciono opterećenje zgrada, koje je uključeno u opterećenje sistema grejanja, uzimajući u obzir savremene regulatorne zahteve za razmenu vazduha u zatvorenom prostoru. U tu svrhu potrebno je za kuće različitih visina, prije svega, standardne serije izvršiti proračun toplotnih gubitaka, kako prenosnih tako i ventilacionih u skladu sa savremenih zahteva normativna dokumentacija Ruske Federacije.

3. Na osnovu ispitivanja u punom obimu uzeti u obzir trajanje karakterističnih načina rada ventilacionih sistema i neistovremenost njihovog rada za različite potrošače.

4. Nakon razjašnjenja termičkih opterećenja sistema za grijanje potrošača, izraditi raspored za regulaciju sezonskog opterećenja od 150-70 °C sa „graničnom granicom“ za 115°S. Mogućnost prelaska na klasični raspored od 115-70 °C bez „prekidanja“ uz kvalitetnu regulaciju treba utvrditi nakon razjašnjenja smanjenih toplinskih opterećenja. Odredite temperaturu vode povratne mreže prilikom izrade smanjenog rasporeda.

5. Preporučiti projektantima, projektantima novih stambenih zgrada i organizacije za popravke izvođenje remont stari stambeni fond, molba savremeni sistemi ventilaciju, koja omogućava regulaciju razmene vazduha, uključujući i mehaničku sa sistemima za rekuperaciju toplotne energije zagađenog vazduha, kao i uvođenje termostata za podešavanje snage grejnih uređaja.

Književnost

1. Sokolov E.Ya. Toplotne i toplotne mreže, 7. izdanje, M.: Izdavačka kuća MPEI, 2001.

2. Gershkovich V.F. „Sto pedeset... Norma ili bista? Refleksije na parametre rashladnog sredstva…” // Ušteda energije u zgradama. - 2004 - br. 3 (22), Kijev.

3. Unutrašnji sanitarni uređaji. U 15 sati 1. dio Grijanje / V.N. Bogoslovsky, B.A. Krupnov, A.N. Scanavi i drugi; Ed. I.G. Staroverov i Yu.I. Schiller, - 4. izdanje, revidirano. i dodatne - M.: Stroyizdat, 1990. -344 str.: ilustr. – (Priručnik za dizajnera).

4. Samarin O.D. Termofizika. Uštedu energije. Energetska efikasnost / Monografija. M.: Izdavačka kuća DIA, 2011.

6. A.D. Krivoshein, Ušteda energije u zgradama: prozirne strukture i ventilacija prostorija // Arhitektura i izgradnja Omske regije, br. 10 (61), 2008.

7. N.I. Vatin, T.V. Samoplyas “Ventilacijski sistemi za stambene prostore stambenih zgrada”, Sankt Peterburg, 2004.

temperaturni graf predstavlja zavisnost stepena zagrevanja vode u sistemu od temperature hladnog spoljašnjeg vazduha. Nakon potrebnih proračuna, rezultat se prikazuje u obliku dva broja. Prvi znači temperaturu vode na ulazu u sistem grijanja, a drugi na izlazu.

Na primjer, unos 90-70ᵒS znači da je za dato klimatskim uslovima za grijanje određenog objekta bit će potrebno da rashladna tekućina na ulazu u cijevi ima temperaturu od 90ᵒS, a na izlazu 70ᵒS.

Sve vrijednosti su prikazane za temperaturu vanjskog zraka za najhladniji petodnevni period. Ova projektna temperatura je prihvaćena prema Zajedničkom poduhvatu "Toplotna zaštita zgrada". Unutrašnja temperatura za stambene prostore, prema normama, prihvaćeno je 20ᵒS. Raspored će osigurati ispravnu opskrbu rashladnom tekućinom u cijevima za grijanje. Ovo će izbjeći hipotermiju prostorija i rasipanje resursa.

Potreba za izvođenjem konstrukcija i proračuna

Za svaku se mora izraditi dijagram temperature lokalitet.Omogućava vam da osigurate najkompetentniji rad sistema grijanja, i to:

  1. Podesite gubitak toplote tokom hranjenja vruća voda u kućama sa prosječnom dnevnom vanjskom temperaturom.
  2. Sprečite nedovoljno zagrevanje prostorija.
  3. obavezati termalne stanice za opskrbu potrošača uslugama koje ispunjavaju tehnološke uslove.

Takvi proračuni su neophodni i za velike toplane i za kotlovnice u malim naseljima. U ovom slučaju, rezultat proračuna i konstrukcija će se zvati raspored kotlovnice.

Načini kontrole temperature u sistemu grijanja

Po završetku proračuna potrebno je postići izračunati stepen zagrijavanja rashladne tekućine. To možete postići na nekoliko načina:

  • kvantitativno;
  • kvaliteta;
  • privremeni.

U prvom slučaju se mijenja brzina protoka vode koja ulazi u mrežu grijanja, u drugom slučaju se reguliše stepen zagrijavanja rashladne tekućine. Privremena opcija uključuje diskretno dovod vruće tekućine u mrežu grijanja.

Za centralni sistem Opskrba toplinom je najkarakterističnija za visokokvalitetno, dok količina vode koja ulazi u krug grijanja ostaje nepromijenjena.

Tipovi grafikona

Ovisno o namjeni toplinske mreže razlikuju se načini izvođenja. Prva opcija je uobičajeni raspored grijanja. To je konstrukcija za mreže koje rade samo za grijanje prostora i centralno su regulirane.

Povećani raspored se obračunava za mreže grijanja koje obezbjeđuju grijanje i opskrbu toplom vodom. Napravljen je za zatvorene sisteme i prikazuje ukupno opterećenje sistema za snabdevanje toplom vodom.

Prilagođeni raspored je također namijenjen za mreže koje rade i za grijanje i za grijanje. Ovdje se uzimaju u obzir gubici topline kada rashladna tekućina prolazi kroz cijevi do potrošača.


Izrada temperaturnog grafikona

Konstruisana prava linija zavisi od sledećih vrednosti:

  • normalizirana temperatura zraka u prostoriji;
  • vanjska temperatura zraka;
  • stepen zagrijavanja rashladne tekućine kada uđe u sistem grijanja;
  • stepen zagrijavanja rashladne tekućine na izlazu iz mreže zgrade;
  • stepen prenosa toplote uređaji za grijanje;
  • toplinske provodljivosti vanjskih zidova i ukupnih toplinskih gubitaka zgrade.

Za kompetentan proračun potrebno je izračunati razliku između temperatura vode u direktnoj i povratnoj cijevi Δt. Što je veća vrijednost u pravoj cijevi, to je bolji prijenos topline sistema grijanja i veća je unutrašnja temperatura.

Da bi se rashladna tečnost racionalno i ekonomično trošila, potrebno je postići minimalnu moguću vrijednost Δt. To se može postići, na primjer, radom na dodatna izolacija vanjske konstrukcije kuće (zidovi, obloge, plafoni preko hladnog podruma ili tehničkog podzemlja).

Proračun načina grijanja

Prije svega, morate dobiti sve početne podatke. Standardne vrijednosti temperatura vanjskog i unutrašnjeg zraka prihvaćene su prema zajedničkom poduhvatu "Toplotna zaštita zgrada". Da biste pronašli snagu uređaja za grijanje i gubitke topline, morat ćete koristiti sljedeće formule.

Toplotni gubitak zgrade

U ovom slučaju, ulazni podaci će biti:

  • debljina vanjskih zidova;
  • toplinska provodljivost materijala od kojeg su izrađene ogradne konstrukcije (u većini slučajeva to je naznačeno od strane proizvođača, označeno slovom λ);
  • površina vanjskog zida;
  • klimatsko područje izgradnje.

Prije svega, utvrđuje se stvarna otpornost zida na prijenos topline. U pojednostavljenoj verziji, možete ga pronaći kao količnik debljine zida i njegove toplotne provodljivosti. Ako se vanjska struktura sastoji od nekoliko slojeva, posebno pronađite otpor svakog od njih i dodajte rezultirajuće vrijednosti.

Toplotni gubici zidova izračunavaju se po formuli:

Q = F*(1/R 0)*(t unutarnji zrak -t vanjski zrak)

Ovdje je Q gubitak topline u kilokalorijama, a F je površina vanjskih zidova. Za precizniju vrijednost potrebno je uzeti u obzir površinu zastakljivanja i njegov koeficijent prijenosa topline.


Proračun površinske snage baterija

Specifična (površinska) snaga se izračunava kao količnik maksimalne snage uređaja u W i površine prenosa toplote. Formula izgleda ovako:

R otkucaja \u003d R max / F akt

Proračun temperature rashladnog sredstva

Na osnovu dobijenih vrednosti, temperaturni režim grijanje i izgrađen je direktni prijenos topline. Na jednoj osi su ucrtane vrijednosti stepena zagrijanosti vode koja se dovodi u sistem grijanja, a na drugoj spoljna temperatura zraka. Sve vrijednosti su uzete u stepenima Celzijusa. Rezultati proračuna su sažeti u tabeli u kojoj su naznačene čvorne tačke cjevovoda.

Prilično je teško izvršiti proračune prema metodi. Za kompetentan izračun najbolje je koristiti posebne programe.

Za svaku zgradu, takav proračun pojedinačno provodi društvo za upravljanje. Za približnu definiciju vode na ulazu u sistem možete koristiti postojeće tabele.

  1. Za velike dobavljače toplotne energije koriste se parametri rashladne tečnosti 150-70ᵒS, 130-70ᵒS, 115-70ᵒS.
  2. Za male sisteme sa više jedinica važe postavke. 90-70ᵒS (do 10 spratova), 105-70ᵒS (preko 10 spratova). Može se usvojiti i raspored od 80-60ᵒS.
  3. Prilikom dogovaranja autonomni sistem grijanje za individualni dom dovoljno je kontrolirati stupanj grijanja uz pomoć senzora, ne možete napraviti grafikon.

Izvršene mjere omogućavaju određivanje parametara rashladnog sredstva u sistemu u određenom trenutku. Analizirajući podudarnost parametara sa rasporedom, možete provjeriti efikasnost sistema grijanja. Tablica temperaturnog grafikona također pokazuje stepen opterećenja sistema grijanja.

Računari dugo i uspješno rade ne samo na stolovima kancelarijski radnici, ali i u proizvodnji i tehnološkim procesima. Automatizacija uspešno upravlja parametrima sistema za snabdevanje toplotom zgrada, obezbeđujući unutar njih ...

Dato željenu temperaturu vazduh (ponekad radi uštede menjanja tokom dana).

Ali automatizacija mora biti ispravno konfigurirana, dati joj početne podatke i algoritme za rad! Ovaj članak govori o optimalnom temperaturnom rasporedu grijanja - ovisnosti temperature rashladnog sredstva sustava grijanja vode na različitim vanjskim temperaturama.

O ovoj temi se već raspravljalo u članku o. Ovdje nećemo izračunavati toplinske gubitke objekta, već ćemo razmotriti situaciju kada su ti toplinski gubici poznati iz prethodnih proračuna ili iz podataka stvarnog rada pogonskog objekta. Ako je objekat u funkciji, onda je bolje uzeti vrijednost toplotnih gubitaka pri izračunatoj vanjskoj temperaturi iz statističkih stvarnih podataka prethodnih godina rada.

U gore pomenutom članku, za konstruisanje zavisnosti temperature rashladnog sredstva od temperature spoljašnjeg vazduha, numeričkom metodom se rešava sistem nelinearnih jednačina. U ovom članku će biti predstavljene "direktne" formule za izračunavanje temperature vode na "dovodu" i na "povratu", što predstavlja analitičko rješenje problema.

O bojama ćelija Excel list, koji se koriste za formatiranje u člancima, možete pročitati na stranici « ».

Izračunavanje u Excelu temperaturnog grafa grijanja.

Dakle, prilikom postavljanja kotla i/ili termalni čvor od temperature vanjskog zraka, sistem automatizacije mora postaviti temperaturni graf.

Možda, ispravan senzor postavite temperaturu vazduha unutar zgrade i podesite rad sistema za kontrolu temperature rashladne tečnosti od unutrašnje temperature vazduha. Ali često je teško odabrati lokaciju senzora iznutra zbog različitih temperatura razne prostorije objekta ili zbog značajne udaljenosti ovog mjesta od termalne jedinice.

Razmotrimo primjer. Recimo da imamo objekat - zgradu ili grupu zgrada koja prima toplotnu energiju iz jednog zajedničkog zatvorenog izvora opskrbe toplinom - kotlovnice i / ili termo jedinice. Zatvoreni izvor je izvor iz kojeg je zabranjen izbor tople vode za vodosnabdijevanje. U našem primjeru pretpostavit ćemo da, osim direktnog odabira tople vode, nema ni odvođenja topline za grijanje vode za opskrbu toplom vodom.

Za usporedbu i provjeru ispravnosti proračuna uzimamo početne podatke iz gornjeg članka "Proračun grijanja vode za 5 minuta!" i sastavite u Excelu mali program za izračunavanje grafika temperature grijanja.

Početni podaci:

1. Procijenjeni (ili stvarni) toplinski gubici objekta (zgrade) Q str u Gcal/h pri projektnoj vanjskoj temperaturi zraka t nr zapiši

do ćelije D3: 0,004790

2. projektovana temperatura vazduh unutar objekta (zgrade) t time u °C unesite

do ćelije D4: 20

3. Procijenjena vanjska temperatura t nr u °C ulazimo

do ćelije D5: -37

4. Procijenjena temperatura dovodne vode t pr unesite u °C

do ćelije D6: 90

5. Procijenjena temperatura povratne vode t op u °C unesite

do ćelije D7: 70

6. Pokazatelj nelinearnosti prijenosa topline primijenjenih grijaćih uređaja n zapiši

do ćelije D8: 0,30

7. Trenutna (za nas interesantna) vanjska temperatura t n u °C ulazimo

do ćelije D9: -10

Vrijednosti u ćelijamaD3 – D8 za određeni objekt se pišu jednom i onda se ne mijenjaju. Vrijednost ćelijeD8 se može (i treba) mijenjati određivanjem parametara rashladne tekućine za različito vrijeme.

Rezultati proračuna:

8. Procijenjeni protok vode u sistemu GR u t/h izračunavamo

u ćeliji D11: =D3*1000/(D6-D7) =0,239

GR = QR *1000/(titd top )

9. Relativni toplotni tok q odrediti

u ćeliji D12: =(D4-D9)/(D4-D5) =0,53

q =(tvr tn )/(tvr tnr )

10. Temperatura vode na "dovodu" tP u °C izračunavamo

u ćeliji D13: =D4+0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =61,9

tP = tvr +0,5*(titd top )* q +0,5*(titd + top -2* tvr )* q (1/(1+ n ))

11. Temperatura povratne vode to u °C izračunavamo

u ćeliji D14: =D4-0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =51,4

to = tvr -0,5*(titd top )* q +0,5*(titd + top -2* tvr )* q (1/(1+ n ))

Obračun u Excelu temperature vode na "dovodu" tP i na povratku to za odabranu vanjsku temperaturu tn završeno.

Napravimo sličan proračun za nekoliko različitih vanjskih temperatura i napravimo grafikon temperature grijanja. (Možete pročitati kako se grade grafikoni u Excelu.)

Pomirimo dobijene vrijednosti ​​grafa temperature grijanja sa rezultatima dobijenim u članku "Proračun zagrijavanja vode za 5 minuta!" - vrijednosti se poklapaju!

Rezultati.

Praktična vrijednost prikazanog proračuna grafa temperature grijanja leži u činjenici da uzima u obzir vrstu instaliranih uređaja i smjer kretanja rashladne tekućine u ovim uređajima. Koeficijent nelinearnosti prijenosa topline n, što ima značajan uticaj na temperaturni grafikon grijanja u različiti uređaji drugačije.

Pregledavajući statistiku posjeta našem blogu, primijetio sam da se vrlo često pojavljuju fraze za pretraživanje kao što je npr. "Kolika bi trebala biti temperatura rashladne tekućine na minus 5 napolju?". Odlučio da objavim stari. grafik regulacije kvaliteta opskrbe toplinom na osnovu prosječne dnevne vanjske temperature. Želim upozoriti one koji će na osnovu ovih brojki pokušati riješiti odnose sa stambenim odjelom ili mrežama grijanja: rasporedi grijanja za svako pojedinačno naselje su različiti (o tome sam pisao u članku). Termalne mreže u Ufi (Baškirija) rade po ovom rasporedu.

Također želim da skrenem pažnju na činjenicu da se regulacija odvija prema prosječno dnevno vanjske temperature, pa ako, na primjer, noću napolju minus 15 stepeni, a tokom dana minus 5, tada će se temperatura rashladne tekućine održavati u skladu s rasporedom minus 10 o C.

U pravilu se koriste sljedeće temperaturne karte: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Raspored se bira u zavisnosti od specifičnih lokalnih uslova. Sistemi grijanja kuća rade po rasporedu 105/70 i 95/70. Prema rasporedu 150, 130 i 115/70 rade glavne toplotne mreže.

Pogledajmo primjer kako koristiti grafikon. Pretpostavimo da je temperatura napolju minus 10 stepeni. Mreže grijanja rade prema temperaturnom rasporedu 130/70 , što znači na -10 o S temperatura nosača toplote u dovodnom cevovodu toplotne mreže mora biti 85,6 stepeni, u dovodnom cevovodu sistema grejanja - 70,8 o C sa rasporedom 105/70 odn 65,3 o C po rasporedu 95/70. Temperatura vode nakon sistema grijanja mora biti 51,7 o S.

U pravilu se vrijednosti temperature u dovodnom cjevovodu toplinskih mreža zaokružuju prilikom postavljanja izvora topline. Na primjer, prema rasporedu, trebalo bi da bude 85,6 ° C, a 87 stepeni je postavljeno u CHP ili kotlovnici.


Temperatura
outdoor
zrak
Tnv, o C
Temperatura mrežne vode u dovodnom cjevovodu
T1, oko C
Temperatura vode u dovodnoj cijevi sistema grijanja
T3, o C
Temperatura vode nakon sistema grijanja
T2, o C
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Nemojte se fokusirati na dijagram na početku posta - ne odgovara podacima iz tabele.

Proračun temperaturnog grafa

Metoda za izračunavanje temperaturnog grafa opisana je u priručniku (poglavlje 4, str. 4.4, str. 153,).

Ovo je prilično naporan i dugotrajan proces, jer se za svaku vanjsku temperaturu mora izračunati nekoliko vrijednosti: T 1, T 3, T 2, itd.

Na našu radost, imamo kompjuter i MS Excel tabelu. Kolega na poslu mi je podijelio gotovu tabelu za izračunavanje temperaturnog grafikona. Svojevremeno ju je napravila njegova supruga, koja je radila kao inženjer za grupu režima u toplotnim mrežama.

Da bi Excel mogao izračunati i izgraditi grafikon, dovoljno je unijeti nekoliko početnih vrijednosti:

  • projektna temperatura u dovodnom cjevovodu toplinske mreže T 1
  • projektna temperatura u povratnom cjevovodu toplinske mreže T 2
  • projektna temperatura u dovodnoj cijevi sistema grijanja T 3
  • Vanjska temperatura T n.v.
  • Unutrašnja temperatura T v.p.
  • koeficijent " n» (obično se ne mijenja i jednak je 0,25)
  • Minimalni i maksimalni rez temperaturnog grafikona Cut min, Cut max.

Sve. ništa se više ne traži od tebe. Rezultati proračuna biće u prvoj tabeli tabele. Podebljano je.

Grafikoni će također biti obnovljeni za nove vrijednosti.

Tabela također uzima u obzir temperaturu vode u direktnoj mreži, uzimajući u obzir brzinu vjetra.

Svaka kompanija za upravljanje nastoji postići ekonomične troškove grijanja stambene zgrade. Osim toga, stanovnici privatnih kuća pokušavaju doći. To se može postići ako se napravi temperaturni graf, koji će odražavati ovisnost topline koju proizvode nosači od vremenskim uvjetima na ulici. Pravilna upotreba ovih podataka omogućava optimalnu distribuciju tople vode i grijanja do potrošača.

Šta je temperaturni grafikon

Isti način rada ne treba održavati u rashladnoj tečnosti, jer se van stana temperatura menja. Ona je ta koja se treba voditi i, ovisno o njoj, mijenjati temperaturu vode u grijaćim objektima. Ovisnost temperature rashladne tekućine o temperaturi vanjskog zraka sastavljaju tehnolozi. Za njegovu kompilaciju uzimaju se u obzir vrijednosti rashladne tekućine i vanjske temperature zraka.

Prilikom projektiranja bilo koje zgrade moraju se uzeti u obzir veličina opreme za grijanje koja se isporučuje u njoj, dimenzije same zgrade i poprečni presjeci cijevi. U visokoj zgradi, stanovnici ne mogu samostalno povećati ili smanjiti temperaturu, jer se ona napaja iz kotlovnice. Podešavanje načina rada uvijek se vrši uzimajući u obzir temperaturni grafikon rashladne tekućine. Uzima se u obzir i sama temperaturna shema - ako povratna cijev opskrbljuje vodu s temperaturom iznad 70 ° C, tada će protok rashladne tekućine biti prekomjeran, ali ako je mnogo niži, postoji nedostatak.

Bitan! Temperaturni raspored je sastavljen na način da se pri svakoj temperaturi vanjskog zraka u stanovima održava stabilan optimalni nivo grijanja od 22 °C. Zahvaljujući njemu, ni najteži mrazevi nisu strašni, jer će sistemi grijanja biti spremni za njih. Ako je vani -15 ° C, dovoljno je pratiti vrijednost indikatora kako biste saznali kolika će biti temperatura vode u sistemu grijanja u tom trenutku. Što je spoljašnje vreme teže, to bi voda unutar sistema trebalo da bude toplija.

Ali nivo grijanja koji se održava u zatvorenom prostoru ne ovisi samo o rashladnoj tekućini:

  • Vanjska temperatura;
  • Prisutnost i snaga vjetra - njegovi jaki udari značajno utiču na gubitak topline;
  • Toplotna izolacija - kvalitetno obrađeni konstruktivni dijelovi zgrade pomažu u održavanju topline u zgradi. To se radi ne samo tokom izgradnje kuće, već i zasebno na zahtjev vlasnika.

Tablica temperature nosača topline prema vanjskoj temperaturi

Da bi se izračunao optimalni temperaturni režim, potrebno je uzeti u obzir karakteristike koje imaju uređaji za grijanje - baterije i radijatori. Najvažnije je izračunati njihovu specifičnu snagu, ona će biti izražena u W / cm 2. To će najdirektnije utjecati na prijenos topline sa zagrijane vode na zagrijani zrak u prostoriji. Važno je uzeti u obzir njihovu površinsku snagu i raspoloživi koeficijent otpora prozorski otvori i spoljnih zidova.

Nakon što se uzmu u obzir sve vrijednosti, potrebno je izračunati razliku između temperature u dvije cijevi - na ulazu u kuću i na izlazu iz nje. Što je veća vrijednost u ulaznoj cijevi, to je veća u povratnoj cijevi. Shodno tome, unutrašnje grijanje će se povećati ispod ovih vrijednosti.

Vanjsko vrijeme, Sna ulazu u zgradu, CPovratna cijev, C
+10 30 25
+5 44 37
0 57 46
-5 70 54
-10 83 62
-15 95 70

Pravilna upotreba rashladnog sredstva podrazumijeva pokušaje stanovnika kuće da smanje temperaturnu razliku između ulazne i izlazne cijevi. To može biti građevinski radovi za izolaciju zidova spolja ili toplotnu izolaciju spoljnih toplovodnih cevi, izolaciju plafona iznad hladne garaže ili podruma, izolaciju unutrašnjosti kuće ili više radova koji se izvode istovremeno.

Grijanje u radijatoru također mora biti u skladu sa standardima. U centralnom sistemi grijanja obično varira od 70 C do 90 C u zavisnosti od spoljne temperature vazduha. Važno je imati na umu da u ugaonim prostorijama ne može biti manja od 20 C, dok je u ostalim prostorijama stana dozvoljeno da padne do 18 C. Ako temperatura napolju padne na -30 C, onda se grijanje u u prostorijama treba porasti za 2 C. U ostalim prostorijama treba povećati i temperaturu, s tim da ona može biti različita u prostorijama za različite namjene. Ako je u sobi dijete, onda može biti od 18 C do 23 C. U ostavama i hodnicima grijanje može varirati od 12 C do 18 C.

Važno je napomenuti! uzeti u obzir prosječne dnevne temperature- ako je temperatura oko -15 C noću, a -5 C tokom dana, tada će se smatrati vrijednošću od -10 C. Ako je noću bila oko -5 C, a na danju porastao je na +5 C, tada se zagrijavanje uzima u obzir na vrijednosti od 0 C.

Raspored dovoda tople vode u stan

Da bi potrošaču isporučile optimalnu toplu vodu, CHP postrojenja moraju je slati što topliju. Toplovodi su uvijek toliko dugački da se njihova dužina može mjeriti kilometrima, a dužina stanova se mjeri hiljadama. kvadratnih metara. Bez obzira na toplinsku izolaciju cijevi, toplina se gubi na putu do korisnika. Zbog toga je potrebno što više zagrijati vodu.


Međutim, voda se ne može zagrijati na više od tačke ključanja. Stoga je pronađeno rješenje - povećati pritisak.

Važno je znati! Kako se diže, tačka ključanja vode se pomiče prema gore. Kao rezultat toga, do potrošača dolazi zaista vruće. Sa porastom pritiska ne trpe podizači, mikseri i slavine, a svi stanovi do 16. sprata mogu se obezbediti toplom vodom bez dodatnih pumpi. U toplovodu voda obično sadrži 7-8 atmosfera, gornja granica obično ima 150 sa marginom.

izgleda ovako:

Temperatura ključanjaPritisak
100 1
110 1,5
119 2
127 2,5
132 3
142 4
151 5
158 6
164 7
169 8

Opskrba toplom vodom do zimsko vrijeme godine moraju biti kontinuirane. Izuzetak od ovog pravila su nesreće na opskrbi toplinom. Topla voda se može isključiti samo ljetni period za preventivni rad. Takav rad se izvodi kao u sistemima grijanja zatvorenog tipa kao iu otvorenim sistemima.

Podijeli: