Установка вакуумного напыления. Курсовая работа: Вакуумное напыление

Здравствуйте, друзья.


Итак, история началась немного ранее, когда у нас появилась вакуумная камера. Путь её к нам был неблизок и может быть описан отдельным рассказом, но это, как говорится, «совсем другая история». Скажу только, что ещё раньше она приносила людям какую-то пользу в одной из лабораторий Гёттингенского университета.

Первое, на чём мы начали эксплуатировать вакуумную камеру, стало испробывание способа термического осаждения металлов на подложки. Способ прост и стар, как мир. В молибденовый тигель помещается мишень распыляемого металла, например, серебра. Вокруг него размещён нагревательный элемент. Мы использовали проволоку из вольфрамрениевого сплава, которую наматывали в виде спирали.

Полностью устройство для термического напыления выглядит следующим образом:

Оснастка для термического напыления металлов. а. В сборе (защитный экран и задвижка сняты). Обозначения: 1 – тигель, 2 – нагревательный элемент, 3 – паропровод, 4 – токоподвод, 5 – термопара, 6 – рамка для образца.

После пропускания тока (в вакуумную камеру идёт через гермовводы) спираль раскаляется, нагревает лодочку, в которой также нагревается материал мишени и испаряется. Облако металлического пара поднимается по паропроводу и окутывает тело, на которое необходимо осадить металлическую плёнку.

Сам по себе способ простой и хороший, однако есть и минусы: большое энергопотребление, трудно располагать в облаке пара поверхности (тела), на которые нужно осаждать плёнку. Адгезия тоже не самая лучшая. Наносили на разные материалы, в том числе на металлы, стекло, пластик и др. В основном - для исследовательских целей, поскольку мы только осваивали вакуумное оборудование.

Теперь настал черёд рассказать про вакуумную систему. Эксперименты мы проводили в вакуумной камере, оснащенной вакуумной системой, состоящей из роторного форвакуумного и турбомолекулярного насоса и обеспечивающей остаточное давление 9,5 10 -6 – 1,2 10 -5 мм.рт.ст.
Если на первый взгляд кажется, что она не сложная, то на самом деле это не так. Во-первых, сама камера должна иметь герметичность, необходимую для поддержания высокого вакуума. Это достигается применением герметизации всех функциональных фланцев и отверстий. Верхний и нижний фланцы-крышки имеют такие же, по-принципу, резиновые уплотнения, как и самые малые отверстия, предназначенные для установки окон, датчиков, устройств, гермовводов и др. фланцевых крышек, только диаметром гораздо большим. Например, для надежной герметизации такого отверстия


Требуется фланец, прокладка и крепеж, как на этой фотографии.


Вот этим датчиком производится измерение вакуума в камере, сигнал с него поступает на прибор, который показывает уровень высокого вакуума.

Вакуум необходимого уровня (например 10-5 мм.рт.ст.), достигается следующим образом. Вначале форвакуумным насосом откачивается низкий вакуум до уровня 10-2. По достижении этого уровня включается высоковакуумный насос (турбомолекулярный), ротор которого может вращаться со скоростью 40 000 об/мин. При этом форвакуумный насос продолжает работать - он откачивает давление из самого турбомолекулярного насоса. Последний является довольно капризным агрегатом и его «тонкое» устройство и сыграло определенную роль в этом повествовании. Мы используем японский турбомолекулярный насос фирмы Osaka vacuum.

Откачиваемый из камеры воздух с парами масла рекомендуется сбрасывать в атмосферу, поскольку мелкодисперсные капельки масла могут «забрызгать» все помещение.

Разобравшись с вакуумной системой и отработав термическое напыление мы решили опробовать другой способ нанесения пленок - магнетронный. У нас был длительный опыт общения с одной крупной лабораторией, которая нам наносила функциональные нанопокрытия для некоторых наших разработок как раз способом магнетронного напыления. Кроме того у нас имеются довольно тесные связи с некоторыми кафедрами МИФИ, МВТУ и других вузов, которые также помогали нам освоить эту технологию.

Но со временем мы захотели использовать побольше возможностей, которые предоставляет вакуумная камера.

В скором времени у нас появился небольшой магнетрон, который мы и решили приспособить для нанесения пленок.

Именно магнетронный вакуумный метод напыления тонких металлических и керамических пленок считается одним из самых производительных, экономичных и простых в эксплуатации среди всех физических методов напыления: термического испарения, магнетронного, ионного, лазерного, электронно-лучевого. Магнетрон устанавливается в один из фланцев, как удобно для использования. Однако для напыления этого еще недостаточно, поскольку он требует подведения определенного напряжения, охлаждающей воды, а также газов для обеспечения поджига плазмы.

Теоретический экскурс

Упрощённо, магнетрон устроен следующим образом. На основании, которое одновременно служит магнитопроводом, помещены сильные магниты, которые образуют сильное магнитное поле. С другой стороны магниты закрываются металлической пластиной, которая служит источником распыляемого материала и называется мишенью. На магнетрон подается потенциал, а на корпус вакуумной камеры - земля. Разница потенциалов, образуемая между магнетроном и корпусом камеры в условиях разряженной атмосферы и магнитного поля приводит к следующему. Атом плазмообразующего газа аргона попадает в действие силовых линий магнитного и электрического поля и ионизируется под их действием. Выбившийся электрон притягивается к корпусу камеры. Положительный ион притягивается к мишени магнетрона и, разогнавшись под действием силовых линий магнитного поля, ударяется о мишень, выбивая из нее частицу. Та вылетает под углом обратным тому углу, под которым в мишень попал ион атома аргона. Частица металла летит от мишени в сторону расположенной напротив нее подложки, которая может быть сделана из любого материала.

Наши вузовские друзья изготовили для этого магнетрона DC источник питания на мощность порядка 500 Вт.

Также мы соорудили систему газонапуска для плазмообразующего газа аргона.

Для размещения предметов, на которые будут напыляться плёнки, мы соорудили следующее приспособление. В крышке камеры имеются технологические отверстия, в которые можно устанавливать разные приспособления: гермовводы электроэнергии, гермовводы движения, прозрачные окошки, датчики и прочее. В одно из этих отверстий мы установили гермоввод вращающегося вала. Снаружи камеры на этот вал мы подвели вращение от небольшого электромоторчика. Установив скорость вращения барабана порядка 2-5 герц мы добились хорошей равномерности нанесения плёнок по окружности барабана.

Снизу, т.е. внутри камеры, мы укрепили на вал лёгкую металлическую корзину, на которую можно навешивать предметы. В канцелярском магазине такой стандартный барабан продаётся как корзина для мусора и стоит порядка 100 рублей.

Теперь у нас было в наличии практически всё необходимое для напыления плёнок. В качестве мишеней мы использовали следующие металлы: медь, титан, нержавейку, алюминий, сплав медь-хром.

И начали пылить. Через прозрачные окна в камеру можно было наблюдать свечение плазмы на поверхности мишени магнетрона. Так мы контролировали «на глазок» момент поджига плазмы и интенсивность напыления.

Способ контроля толщины напыления придумали достаточно простой. Размещали на барабане один и тот же кусочек фольги с замеренной площадью поверхности и измеряли его массу до и после сеанса напыления. Зная плотность напыляемого металла легко вычисляли толщину наносимого покрытия. Регулировали толщину покрытия либо изменением времени напыления, либо регулируя напряжение на источнике питания магнетрона. На этом фото видны прецизионные весы, позволяющие замерять массу образцов с точностью до десятитысячных долей грамма.

Наносили мы на различные материалы: дерево, металлы, фольга, пластики, бумага, полиэтиленовые плёнки, ткани, короче на всё, что можно было разместить в камере и прикрепить к барабану. В основном мы ориентировались на получение эффектов декоративного характера – изменение цвета или тактильного восприятия поверхности. На этих образцах органического и неорганического происхождения можно увидеть разницу в цвете до и после нанесения различных металлических плёнок.

Ещё более рельефно разница в цвете до и после напыления видна на тканях и плёнках. Здесь правый кусочек обычной полиэтиленовой плёнки – не напыленный, а левая покрыта слоем меди.

Ещё один эффект, который может быть использован для различных нужд – это проводимость тонких плёнок на подложках. На этом фото показано сопротивление кусочка бумаги (в омах), на который нанесена плёнка из титана толщиной чуть больше микрона.

Для дальнейшего развития мы выбрали несколько направлений. Один из них – улучшать эффективность напыления плёнок магнетронами. Собираемся «замахнуться» на собственную разработку и изготовление более мощного магнетрона высотой с камеру и мощностью в 2 раза больше, чем показанный в этом очерке. Также мы хотим опробовать технологию реактивного напыления, когда вместе с плазмообразующим газом аргоном в камеру подаются, например, кислород или азот и в ходе напыления плёнок на поверхности подложки образуются не чисто металлические плёнки, а оксиды или нитриды, которые имеют другой спектр свойств, нежели чистые металлические плёнки.

Обработка поверхностей методом вакуумного напыления металлами позволяет усилить положительные характеристики изделий из различных материалов. Металлические детали защищаются от коррозии, лучше проводят электричество, становятся более эстетичными внешне. Металлизация пластиковых изделий позволяет получить качественные и красивые детали из более легких и дешевых материалов. Это особенно актуально для автопромышленности, потому как металлизация пластиковых комплектующих позволяет значительно снизить вес автомобилей. А металлизированный мех придает шубе эксклюзивность, неповторимость и является новым трендом сезона.

В компании «Альфа-К» можно заказать вакуумное металлическое напыление для изделий из различных материалов, в том числе и меха.

Методы

Суть технологии заключается в том, что в условиях вакуума на специальном оборудовании переносятся мельчайшие металлочастицы на рабочую поверхность заготовки. В процессе формирования покрытий исходный металл испаряется, конденсируется, абсорбируется и кристаллизуется в газовой среде, создавая стойкое покрытие. В зависимости от типа заготовки, свойств металлической пленки и выбранного режима напыления получаются самые разнообразные эффекты. Напылить можно практически любой металл: алюминий, никель, хром, медь, бронза, золото, титан, пр. С учетом специфических свойств и особенностей, под каждый металл требуются различные режимы и технические приемы. Например, из-за низкой износостойкости особой технологии требует вакуумное напыление алюминия. Вот почему в нашей компании работают исключительно высококвалифицированные и опытные специалисты. Металлизация проводится разными способами.

Вакуумно-плазменное

В таких системах под неким давлением газа металлизированное покрытие создается путем сильного нагрева источника металла, вследствие чего происходит его испарение, и частицы оседают на заготовку. Камера может быть металлической, стеклянной, обязательно с системой водяного охлаждения. Для нагревания напыляемого элемента используют такие испарители:

  • проволочный либо ленточный вольфрамовый или молибденовый испаритель прямого накала;
  • электронно-радиальный, создающий нагрев с помощью электрической бомбардировки.

В соответствии с исходным металлом или сплавом, который необходимо напылить на деталь, выставляется температура нагрева в теплообменнике, она может достигать 20 тыс. °С. Если у напыляемого металла не очень хорошая адгезия с материалом заготовки, сначала наносится первичный слой из металла с более высокими адгезионными свойствами.

Ионно-вакуумное

Главным преимуществом данного метода считается отсутствие необходимости очень сильно нагревать испаритель. Металл распыляется под воздействием бомбардировки отрицательно заряженными ионами газа. Создание такой среды возможно благодаря особым разрядам внутри рабочей камеры. Для этого в оборудовании используется магнитная система с охлаждением. Тлеющий разряд для распыления напыляемого элемента создается между 2 электродами благодаря подаче высоковольтного напряжения до 4 кВ. В рабочей камере создается газовая среда с давлением до 0,6 Паскаль. По схожему принципу производится также вакуумное ионно-плазменное напыление на специализированном оборудовании.

Поверхности, пригодные для напыления

Любые предметы, способные выдерживать нагрев до 80 °С и воздействие специализированных лаков. Достоинством технологии является то, что для придания изделиям эффекта медных покрытий, зеркального хромирования, золочения, никелирования не нужно предварительно полировать поверхности. Чаще путем вакуумной металлизации покрывают детали из пластика, стекла, металлических сплавов, различные полимерные и керамические изделия. Реже, но все же технология используется для более мягких материалов, таких как древесина, текстиль, мех.

Обработка металлических заготовок и изделий из металлосплавов благодаря хорошей совместимости основания и покрытий не требует использования дополнительных расходных материалов. В то время как полимеры необходимо грунтовать предварительно защитными и адгезионными составами. Для предотвращения деформации полимерных заготовок и снижения напряжения в рабочей среде во время вакуумной металлизации используют специальные модифицирующие компоненты и режимы диффузии материала.

Этапы металлизации

Технологический процесс вакуумного напыления металла на различные изделия включает несколько последовательных этапов:

  • Подготовка детали. Важно, чтобы заготовка имела максимально простую форму, без труднодоступных для оседания конденсата мест.
  • Нанесение защиты. На полимерные основы, содержащие низкомолекулярные наполнители, необходимо нанести антидиффузионное покрытие.
  • Сушка. В течение 3 часов детали сушатся при 80 градусах по Цельсию, что позволяет удалить впитавшуюся влагу.
  • Обезжиривание. В вакуумной камере с помощью тлеющего разряда заготовка обезжиривается. Это особенно хорошо влияет на структуру полимеров.
  • Активационная обработка. Способ обработки выбирается в зависимости от материала изделия, необходимо это для повышения адгезии поверхности перед металлизацией.
  • Напыление металла. Путем конденсации создается металлизированный слой на заготовке.
  • Контроль качества покрытия. Декоративные детали осматриваются на предмет равномерности напыления и его прочности. Технические изделия испытываются дополнительно с помощью липкой ленты, ультразвуковых колебаний, трения и т.д.


Установки металлизации - довольно сложное и дорогое оборудование, потребляющее много электричества. Для создания комплексного технологического цикла требуется довольно просторное помещение, так как разместить следует несколько разнофункциональных устройств. Основные узлы вакуумной системы:

  • Блок энергообеспечения и управления в совокупности с источником конденсируемых металлов.
  • Газораспределительная система, создающая вакуумное пространство и регулирующая потоки газов.
  • Рабочая камера для проведения вакуумной металлизации.
  • Блок термического контроля, управления толщиной и скоростью напыления, свойствами покрытий.
  • Транспортирующий блок, отвечающий за изменение положения заготовок, их подачу и изъятие из камеры.
  • Устройства блокировки узлов, газовые фильтры, заслонки и прочее вспомогательное оборудование.

Магнетронное и ионно-плазменное вакуумное оборудование бывает разных габаритов, от небольших, с камерами в несколько литров до весьма крупных, с объемом камер в несколько кубических метров.

Компания «Альфа-К» располагает достаточными производственными мощностями и соответствующим оборудованием для обеспечения различных способов вакуумного напыления. У нас можно заказать ионно-плазменное покрытие изделий из любых материалов такими металлами, как титан, медь, алюминий, латунь, хром, различные сплавы и пр. Гарантируем высокое качество работы и лояльные цены.

Модификация различных конструкций, деталей и функциональных элементов зачастую выполняется путем полного изменения структуры материалов. Для этого задействуются средства глубокой термической, плазменной и химической обработки. Но существует и широкий сегмент методов изменения эксплуатационных свойств за счет внешних покрытий. К таким способам относится вакуумная металлизация, благодаря которой можно улучшать декоративные, токопроводящие, отражающие и другие характеристики материалов.

Общие сведения о технологии

Суть метода заключается в напылении частиц металла на рабочую поверхность. Процесс формирования нового покрытия происходит за счет испарения донорских металлов в условиях вакуума. Технологический цикл подразумевает выполнение нескольких стадий структурного изменения целевой основы и элементов покрытия. В частности, выделяются процессы испарения, конденсации, абсорбции и кристаллизации. Ключевой процедурой можно назвать взаимодействие металлических частиц с поверхностью в условиях особой газовой среды. На этом этапе технология вакуумной металлизации обеспечивает процессы диффузии и присоединения частиц к структуре обрабатываемой детали. На выходе в зависимости от режимов напыления, характеристик покрытия и типа заготовки можно получать самые разные эффекты. Современные технические средства позволяют не просто улучшать отдельные эксплуатационные качества изделия, но и с высокой точностью дифференцировать свойства поверхности на отдельных участках.

Применяемое оборудование

Различают три основные группы машин, используемых для данной технологии. Это оборудование непрерывного, полунепрерывного и периодического действия. Соответственно, они различаются по признаку общей организации обрабатывающего процесса. Агрегаты с непрерывным действием часто используют на серийных производствах, где требуется поточная вакуумная металлизация. Оборудование этого типа может быть одно- и многокамерным. В первом случае агрегаты ориентируются на выполнение непосредственно металлизации. Многокамерные же модели предусматривают и возможность реализации дополнительных процедур - первичной подготовки изделия, контроля, термической обработки и т.д. Такой подход позволяет оптимизировать процесс изготовления. Машины для периодической и полунепрерывной металлизации, как правило, имеют одну основную камеру. Именно в силу нерегулярности производства они используются для конкретной процедуры, а подготовительные операции и тот же контроль качества осуществляются в отдельном порядке - иногда в ручном режиме без автоматизированных линий. Теперь стоит подробнее рассмотреть, из каких узлов состоят такие агрегаты.

Устройство машин для металлизации

Помимо основной камеры, где и происходят процессы напыления, оборудование включает множество вспомогательных систем и функциональных компонентов. В первую очередь стоит выделить непосредственно источники распыляемого материала, коммуникации которых связываются с газораспределительным комплексом. Чтобы установка вакуумной металлизации могла обеспечивать нужные для конкретной задачи обработки параметры, подающие каналы напыления с регуляторами позволяют, в частности, настраивать температурный уровень, скорость направления потоков и объемы. В частности эта инфраструктура формируется натекателями, насосами, клапанами, фланцевыми элементами и прочей арматурой.

В современных установках для той же регуляции рабочих параметров используются датчики, подключенные к микропроцессорному блоку. Учитывая заданные требования и фиксируя текущие фактические значения, аппаратура без участия оператора может корректировать режимы обработки. Также для облегчения процессов эксплуатации оборудование дополняется внутрикамерными системами очистки и калибровки. Благодаря такой оснастке упрощается ремонт вакуумной металлизации машины, поскольку постоянная и своевременная чистка минимизирует риски перегрузок пневмодвигателей, манипуляторов и коммуникационных контуров. Последние и вовсе рассматриваются как расходная часть, замена которой в агрегатах непрерывного действия выполняется в регулярном порядке техобслуживания.

Целевые материалы для металлизации

Прежде всего процедуре подвергаются металлические заготовки, которые могут быть выполнены в том числе из специальных сплавов. Дополнительное покрытие требуется для обеспечения антикоррозийного слоя, повышения качества электрической проводки или же изменения декоративных свойств. В последние годы вакуумная металлизация все чаще используется и применительно к полимерным изделиям. Данный процесс имеет свою специфику, обусловленную характеристиками структуры объектов такого рода. Реже технология применяется в отношении изделий, которые имеют низкие показатели твердости. Это касается древесины и некоторых синтетических материалов.

Особенности металлизации пластиков

Напыление на поверхности пластиковых деталей также способно изменить его электрические, физические и химические свойства. Нередко металлизацию используют и как средство повышения оптических качеств подобных заготовок. Главной же проблемой при выполнении таких операций является процесс интенсивного термического испарения, который неизбежно оказывает давление на потоки частиц, напыляющих поверхность элемента. Поэтому требуются специальные режимы регуляции диффузии основного материала и расходуемой массы.

Имеет свою специфику и вакуумная металлизация пластмасс, отличающихся жесткой структурой. В данном случае будет иметь значение присутствие защитных и грунтующих лаков. Для поддержания достаточного уровня адгезии с преодолением барьеров этих пленок может потребоваться повышение энергии термического воздействия. Но здесь же вновь возникает проблема с рисками разрушения пластиковой структуры под влиянием тепловых потоков. В итоге для снятия излишнего напряжения в рабочей среде вводятся модифицирующие компоненты наподобие пластификаторов и растворителей, позволяющих удерживать форму заготовки в оптимальном состоянии независимо от температурного режима.

Особенности обработки пленочных материалов

Технологии изготовления упаковочных материалов предусматривают использование металлизации для ПЭТ-пленок. Данный процесс обеспечивает алюминирование поверхности, благодаря чему заготовка наделяется более высокой прочностью и стойкостью перед внешними воздействиями. В зависимости от параметров обработки и конечных требований к покрытию могут применяться разные способы теплоотвода. Поскольку пленка чувствительна к температуре, вводится дополнительная процедура осаждения. Как и в случае с пластиками, она позволяет регулировать термический баланс, сохраняя оптимальную для заготовки среду. Толщина пленок, которые обрабатываются по методу вакуумной рулонной металлизации, может составлять от 3 до 50 мкм. Постепенно внедряются и технологии, обеспечивающие подобные покрытия на поверхностях материалов толщиной 0,9 мкм, но по большей части это пока лишь экспериментальная практика.

Металлизация отражателей

Это тоже отдельное направление использования металлизации. Целевым объектом в данном случае выступают автомобильные фары. Их конструкция предусматривает наличие отражателей, которые со временем утрачивают свои эксплуатационные качества - тускнеют, ржавеют и, как следствие, становятся непригодными к использованию. Кроме того, даже новая фара может получить случайное повреждение, из-за чего потребуется ее ремонт и восстановление. Именно на эту задачу и ориентируется вакуумная металлизация отражателей, обеспечивающая износостойкое напыление на зеркальной поверхности. Заполнение внешней структуры металлизированными частицами с одной стороны ликвидирует мелкие дефекты, а с другой - выступает защитным покрытием, предотвращая возможные повреждения в будущем.

Организация процесса в домашних условиях

Без специального оборудования можно применить технологию поверхностного химического покрытия, но для вакуумной обработки в любом случае потребуется соответствующая камера. На первом этапе подготавливается сама заготовка - ее следует очистить, обезжирить и при необходимости выполнить шлифование. Далее объект помещается в камеру вакуумной металлизации. Своими руками можно выполнить и специальную оснастку на рельсах из профильных элементов. Это будет удобный способ загрузки и выгрузки материала, если планируется обработка в регулярном режиме. В качестве источника частиц металлизации применяются так называемые болванки - из алюминия, латуни, меди и др. После этого камера настраивается на оптимальный режим обработки и начинается процесс напыления. Готовое изделие сразу после металлизации можно покрыть вручную вспомогательными защитными покрытиями на основе лаков.

Положительные отзывы о технологии

Метод имеет множество положительных качеств, которые отмечают пользователи готовых изделий в разных областях. В частности указывается на высокие защитные свойства покрытия, которое предотвращает процессы коррозии и механического разрушения основы. Положительно отзываются и рядовые потребители продукции, которая подвергалась вакуумной металлизации с целью улучшения или изменения декоративных качеств. Специалисты же подчеркивают и экологическую безопасность технологии.

Негативные отзывы

К минусам данного метода обработки изделий относят сложность технической организации процесса и высокие требования к подготовительным мероприятиям заготовки. И это, не говоря о применении высокотехнологичного оборудования. Только с его помощью можно получить качественное напыление. Стоимость также входит в список недостатков вакуумной металлизации. Цена обработки одного элемента может составлять 5-10 тыс. руб. в зависимости от площади целевой области и толщины покрытия. Другое дело, что серийная металлизация удешевляет стоимость отдельного изделия.

В заключение

Изменение технико-физических и декоративных свойств тех или иных материалов расширяет возможности их дальнейшего применения. Развитие метода вакуумной металлизации обусловило появление специальных направлений обработки с ориентацией на конкретные эксплуатационные качества. Технологи также работают и над упрощением самого процесса напыления, что уже сегодня проявляется в виде уменьшения габаритов оборудования и сокращения процедур пост-обработки. Что касается применения методики в домашних условиях, то это наиболее проблемный способ покрытия, так как требует от исполнителя наличия специальных навыков, не говоря о технических средствах. С другой стороны, более доступные методы напыления не позволяют получать покрытия того же качества - будь то защитный слой или декоративная стилизация.

Для приобретения товарного вида и определенных технических свойств на современном производстве все готовые изделия покрываются различными материалами. Особенно актуальным этот вопрос является для металлических деталей, где покрытие играет не столько декоративную роль, сколько защищает металл от коррозии и прочих вредных факторов окружающей среды.

Вакуумное напыление

В современном производстве самой продвинутой технологией нанесения покрытий на детали является вакуумное напыление. Технология заключается в прямой конденсации пара наносимого покрытия на поверхность детали. Определяется три основных стадии такого напыления:

    Испарение вещества, из которого будет создаваться покрытие;

    Перенос созданного пара к поверхности, на которую вещество будет наноситься;

    Конденсация пара на поверхность детали и создание покрытия из него.

Установка для хромирования литых дисков

Методы вакуумного напыления

Помимо вакуума, в напылении могут учувствовать и другие физические процессы. Нижеприведенная классификация также будет касаться и веществ, которые будут напыляться на поверхность.

Вакуумно-плазменное напыление

Вакуумно-дуговое нанесение покрытий проводится по следующему механизму. Катодом выступает поверхность, на которую необходимо нанесение пленки, анодом выступает подложка газоразряда. Когда дуга накаляет атмосферу до предельной температуры, происходит переход напылительного материала в газообразную фазу и перенос его к катоду. Затем молекулы напылителя конденсируются на поверхности изделия, образуя однородный слой. Однородность в установках вакуумно-дугового напыления может быть отрегулирована вплоть до получения исходного изделия с разводами напылителя.

Такая сложная технология применяется для нанесения сверхтвердых покрытий на режущие и сверлящие инструменты. Крепкие износостойкие буры для перфораторов создаются с помощью вакуумно-плазменного напыления.

Высокопрочные буры для перфоратора

Ионно-вакуумное напыление

Считается самым экологически чистым способом нанести покрытие на любую металлическую поверхность. Минус заключается в дорогостоящем оборудовании, далеко не каждое предприятие может себе позволить его покупку и установку.

Жесткие требования также предъявляются к чистоте поверхности, однако конечный результат превосходит все ожидания. Нанесенное покрытие отличается высокой однородностью, прочностью и износоустойчивостью, поэтому таким способом напыляют покрытия на детали и механизмы, которые будут эксплуатироваться в жестких климатических условиях. Является последней операцией, после которой дальнейшая обработка деталей не допускается – ни сварки, ни резки быть не должно.

Вакуумное напыление алюминия

Нанесение алюминия считается самым популярным способом металлизации практически любой поверхности. Универсальность алюминия позволяет наносить его на такие необычные поверхности, как пластик и стекло, причем, в отличие от остальных металлов, здесь не нужно дополнительное лаковое покрытие для прочности. Алюминий обычно используется в декоративных целях – им обрабатываются автомобильные аксессуары и отражатели для фар, косметические элементы, ручки шкафов и дверей, швейные принадлежности. Этот металл хоть и не отличается высокой прочностью, однако отработка технологии позволила сильно уменьшить стоимость такого напыления, делав его самым распространенным в мире.

Отражатель автомобильной фары с алюминиевым покрытием

Вакуумное напыление металлов

Помимо алюминия, имеется ряд не менее распространенных металлов для напыления. Благодаря различным физическим и химическим свойствам они нашли применение абсолютно во всех отраслях промышленности. Основные назначения напыленных металлов:

    улучшение проводимости;

    повышение изоляции;

    придание износоустойчивых и антикоррозийных свойств.

Регулирование температуры при нанесении слоя покрытия позволяет придать конечному изделию практически любой оттенок, этим часто пользуются для нанесения покрытий «под золото» (используются никеле-титановые сплавы).

Широкое распространение напыление титана и серебра нашли в медицине. Эти уникальные металлы очень хорошо взаимодействуют с организмом человека и имеют антибактериальные свойства. Имплантаты и хирургические инструменты (а также стоматологические и прочие) практически везде имеют напыление серебра – высокая гарантия прочности и стерильности инструмента.

Вакуумное ионно-плазменное напыление

Под воздействием высоких температур покрытие не просто конденсируется на поверхности детали, оно буквально запекается на нем, что придает конечному изделию очень высокие технические характеристики – износоустойчивость при механическом воздействии и хорошую сопротивляемость жестким погодным условиям.

Установка вакуумного напыления УВН

Приборы типа УВН – современные высокотехнологические установки вакуумного напыления. В зависимости от назначения, может оборудоваться любыми устройствами для испарения вещества и его переноса на поверхность детали. Строение:

    Технологическая камера закрытого типа – область, где размещается деталь, которая обрабатывается в процессе вакуумного напыления.

    Блок управления – панель с кнопками и регуляторами, которые позволяют задавать все необходимые параметры перед началом работы. Современные варианты установок вакуумного напыления оборудованы цифровыми дисплеями для отображения параметров процесса в реальном времени.

    Корпус установки скрывает под собой все важные механические и электронные узлы агрегата, защищая их от случайного и несанкционированного вмешательства, а также обеспечивая безопасность оператору станка. В зависимости от размера машины, комплектуется колесиками (с тормозными колодками, для маленьких моделей), либо устанавливается стационарно (для мощных и производительных камер).

Классическая УВН

Вакуумное напыление – принцип работы и технология вакуумного плазменного напыления. Наиболее распространенные методы вакуумного напыления. Ионно вакуумное напыление и принцип его работы. Процесс вакуумного напыления алюминия и его эффективность. Главные особенности вакуумного напыления металла и его отличие от вакуумно ионно плазменного напыления металла. Где можно окупить установку вакуумного напыления по низкой цене

Вакуумное напыление – это процесс, в котором на данном этапе нуждается большая часть современных предприятий. Используется данный метод зачастую на тех производствах, которые занимаются выпуском различной продукции, каким-то образом связанной с дальнейшей эксплуатацией.

Это может быть, как обычное оборудование, так и зубные изделия, которые также нуждаются в процессе вакуумного напыления. Как бы это странно не звучало, но именно медицинская отрасль является одним из тех направлений, где процесс вакуумного напыления используется чаще всего. Использовать в данной отрасли, его можно, как в роли улучшения свойств оборудования для работы, так и в роли покрытия различных материалов, либо же изделий.

Установка вакуумного напыления – это одна из наиболее важных составляющих данного процесса. Мало кто будет спорить с тем, что именно установка вакуумного напыления позволяет производить данный процесс, причем делать это довольно быстро. Принцип работы подобных установок максимально прост. Изначально, внутри подобных систем создается состояние первичного разрежения, которое позволяет превратить кристаллический порошок в специальную смесь, которую можно в дальнейшем наносить на разные покрытия. Далее, внутри установки значительно поднимается уровень давления, что приводи к активному образованию вакуума внутри системы. Далее, вакуум производит процесс, вспрыскивания напыления, которое сразу же оседает на нужном материале, который и будет поддаваться такой обработке.

Еще один очень важный вопрос – это надежность данного процесса. Судя по конструкции и принципу работы подобных установок, не трудно понять, что сделаны, они максимально продумано. Но нельзя исключать и вероятность поломок подобного оборудования. Но даже такая ситуация не окажется столь сложной, ведь подобное оборудование, является вполне ремонтопригодным и довольно легко поддается починке.

Методы вакуумного напыления

Учитывая тот факт, что современный рынок включает в себя огромное количество разнообразных отраслей, было принято решение, сделать сразу несколько методов вакуумного напыления. Все они уникальны и работают по совершенно разному алгоритму.

Сейчас мы рассмотрим наиболее распространенные методы вакуумного напыления:

  • Вакуумное ионно плазменное напыление
  • Вакуумное плазменное напыление
  • Вакуумное ионное напыление

Это три наиболее часто используемых вида напыления на данный момент. Большая часть предприятий, активно использует данную технологию, получая от нее максимум пользы. А это уже говорит о том, что при желании, от данного метода действительно можно получить максимум пользы.

Вакуумно плазменное напыление

Один из наиболее часто встречающихся методов вакуумного напыления – это вакуумное плазменное напыление. Технология данного процесса максимально проста и заключается она в работе внутренней плазмы. Данный элемент служит в роли некого распределителя, позволяющего сделать процесс напыления максимально качественным.

Кроме этого, подобный метод можно похвастаться еще и точностью нанесения покрытия на изделие. А все потому, что внутри установки подобного типа, заранее создан, установлен код, по которому, подобные системы обычно и работают.

Ионно вакуумное напыление

Данный тип вакуумного напыления, максимально напоминает предыдущий. Наиболее явным отличием данной технологии. Можно назвать предварительный процесс ионизации, позволяющий значительно ускорить рабочий процесс.

Наличие рабочих ионов внутри установки вакуумного напыления, не только улучшает качество рабочего процесса, а и делает его более надежным и что немаловажно, быстрым.

Вакуумное напыление алюминия

Если же говорить о том, какой материал чаще всего поддается процессу вакуумного напыления, то наверняка это алюминий. Причиной этому, послужила сфера применения данного металла, который активно используется практически во всех отраслях.

Но во многих из них, требуется, чтобы данный метод был более прочным и надежным. Именно для этого и созданы установки вакуумного напыления алюминия. Данный процесс, является максимально легким, так как материал очень даже хорошо воздействует со смесью, которая на него наносится, во время вакуумного напыления.

Вакуумное напыление металлов

Если же говорить о процессе вакуумного напыления металла, то это еще более легкий процесс. Технология напыления металла максимально проста, из-за чего ей привыкли пользоваться все предприятия. Для качественного нанесения слоя напыления на металл, требуется лишь довести его до нужной температуры. Это и есть единственное условие, которого стоит придерживаться во время вакуумного напыления.

Многие считают, что именно это и является главным преимуществом процесса вакуумного напыления металла.

Вакуумное ионно плазменное напыление

Наиболее сложным в плане конструкции и одновременно эффективным, является процесс вакуумного ионно плазменного напыления. Данная технология, включает в себя огромное количество спорных и очень важных моментов, без которых, достичь высокого уровня эффективности уж явно не получится.

С помощью данного метода, можно без проблем производить вакуумное напыление титана, либо же вакуумное напыление стекла. А это уже говорит о том, что многофункциональность данного метода находится на максимально высоком уровне.

Установка вакуумного напыления УВН

Но какой бы вид вакуумного напыления вы не выбрали, не используя при этом установок вакуумного напыления УВН, достичь в этом, каких-либо успехов у вас вряд ли получится. На данном этапе, стоимость подобных установок находится на больно высоком уровне.

Но если говорить об их эффективности, то в этом и вовсе нет никаких сомнений. Купив себе подобный агрегат, вы сможете быть полностью уверены, что со временем, он сможет отбить все вложенные в него деньги.

Поделиться: