Конструкции кожухотрубчатых теплообменных аппаратов. Кожухотрубный (кожухотрубчатый) теплообменник

Конструкции современных рекуперативных теплообменных аппаратов поверхностного типа непрерывного действия весьма разнообразны. Рассмотрим наиболее характер­ные.

Кожухотрубчатые теплообменники представля­ют собой аппараты, выполненные из пучков труб, скреплен­ных при помощи трубных решеток (досок) и ограниченных кожухами и крышками с патрубками. Трубное и межтрубное пространства в аппарате разобщены, а каждое из них может быть разделено перегородками на несколько ходов. Перегород­ки предназначены для увеличения скорости и, следовательно, коэффициента теплоотдачи теплоносителей. Теплообменники этого типа предназначаются для теплообмена между различны­ми жидкостями, между жидкостями и паром, между жидкостя­ми и газами. Типовые конструкции кожухотрубчатых теплооб­менников применяются в случаях, когда требуется большая поверхность теплообмена.

При нагреве жидкости паром в большинстве случаев пар вво­дится в межтрубное пространство, а нагреваемая жидкость проте­кает по трубкам. В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2... 3 раза больше проходно­го сечения внутри труб. Поэтому при одинаковых расходах тепло­носителей, имеющих одинаковое агрегатное состояние, скорости теплоносителя в межтрубном пространстве более низкие и коэф­фициенты теплоотдачи на поверхности межтрубного простран­ства невысоки, что снижает коэффициент теплопередачи в аппа­рате. На рис. 4.5 показаны различные типы кожухотрубчатых теп­лообменников.

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров. Так, конденсатор современной паровой тур­бины мощностью 300 МВт имеет более 20 тыс. труб с общей по­верхностью теплообмена около 15 тыс. м 2 .

Корпус (кожух) кожухотрубчатого теплообменника представ­ляет собой цилиндр, сваренный из одного или нескольких сталь­ных листов. Кожухи различаются, главным образом, способом со­единения с трубной решеткой и крышками. Толщина стенки ко­жуха определяется максимальным давлением рабочей среды и ди­аметром аппарата, но не меньше 4 мм. К цилиндрическим кром­кам кожуха привариваются фланцы для соединения с крышками или днищами. На наружной поверхности кожуха привариваются патрубки и опоры аппарата.

Трубки кожухотрубчатых аппаратов изготовляют прямыми или изогнутыми (U-образными) диаметром от 12 до 57 мм.

Материал трубок выбирается в зависимости от среды, омыва­ющей ее поверхность. Применяются трубки из стали, латуни и специальных сплавов.

Трубные решетки служат для закрепления в них труб при по­мощи развальцовки, заварки, запайки или сальниковых соедине­ний. Трубные решетки зажимаются болтами между фланцами ко­жуха и крышки или привариваются к кожуху, либо соединяются болтами только с фланцами свободной камеры (см. рис. 4.5).


Рис. 4.5. Типы кожухотрубчатых теплообменников:

а - одноходовый; б - многоходовый; в - пленочный; г - с линзовым компен­сатором; д - с плавающей головкой закрытого типа; е - с плавающей головкой открытого типа; ж - с сальниковым компенсатором; з - с U-образными труб­ками; 1 - кожух; 2 - выходная камера; 3 - трубная решетка; 4 - трубы; 5 - входная камера; 6 - продольная перегородка; 7 - камера; 8 - перегородки в камере; 9 - линзовый компенсатор; 10 - плавающая головка; 11 –сальник; 12 - U-образные трубы; I, II - теплоносители

Крышки кожухотрубчатых аппаратов имеют форму плоских плит, конусов, сфер, а чаще всего выпуклых или вогнутых эллип­сов.

Секционные теплообменники (рис. 4.6) представля­ют собой разновидность трубчатых аппаратов и состоят из несколь­ких последовательно соединенных секций, каждая из которых пред­ставляет собой кожухотрубчатый теплообменник с малым числом труб и кожухом небольшого диаметра.

В секционных теплообменниках при одинаковых расходах жид­костей скорости движения теплоносителей в трубах и межтруб­ном пространстве почти равновелики, что обеспечивает повы­шенные коэффициенты теплопередачи по сравнению с обыч­ными трубчатыми теплообменниками. Простейшим из этого типа является теплообменник «труба в трубе» (в наружную трубу встав­лена труба меньшего диаметра). Все элементы аппарата соедине­ны сваркой.

Рис. 4.6. Секционные теплообменники:

а - водяной подогреватель теплосети; б - типа «труба в трубе»; 1 - линзовый компенсатор; 2 - трубки; 3 - трубная решетка с фланцевым соединением с кожухом; 4 - «калач»; 5 - соединительные патрубки

Недостатками секционных теплообменников являются: высо­кая стоимость единицы поверхности нагрева, так как деление ее на секции вызывает увеличение количества наиболее дорогих эле­ментов аппарата - трубных решеток, фланцевых соединений, переходных камер, компенсаторов и т.д.; значительные гидрав­лические сопротивления вследствие различных поворотов и пере­ходов вызывают повышенный расход электроэнергии на привод прокачивающего теплоноситель насоса.

Кожухи серийных секционных теплообменников изготовляют из труб длиной до 4 м, внутренним диаметром от 50 до 305 мм. Число труб в секции составляет от 4 до 151, поверхность нагрева от 0,75 до 26 м 2 , трубы латунные диаметром 16/14 мм. Отношение поверхно­сти нагрева к объему теплообменника достигает 80 м 2 /м 3 , а удель­ный конструкционный вес составляет 50...80 кг/м 2 поверхности нагрева.

Спиральные теплообменники (рис. 4.7) состоят из двух спиральных каналов прямоугольного сечения, по которым движутся теплоносители I и II. Каналы образуются металлически­ми листами, которые служат поверхностью теплообмена. Внут­ренние концы спиралей соединены разделительной перегородкой. Для обеспечения жесткости конструкции и фиксирования рас­стояния между спиралями приваривают бобышки. С торцов спи­рали закрывают крышками и стягивают болтами.

Горизонтальные спиральные теплообменники применяют для теплообмена между двумя жидкостями. Для теплообмена между конденсирующимся паром и жидкостью используют вертикаль­ные спиральные теплообменники. Такие теплообменники приме­няют в качестве конденсаторов и паровых подогревателей для жид­кости.

Рис. 4.7. Типы спиральных теплообменников:

а - горизонтальный; б - вертикальный; 1, 3 - листы; 2 - разделительная перегородка; 4 - крышки; I, II - теплоносители

К достоинствам спиральных теплообменников можно отнести компактность (большая поверхность теплообмена в единице объ­ема, чем у многоходовых трубчатых теплообменников) при оди­наковых коэффициентах теплопередачи и меньшее гидравличес­кое сопротивление для прохода теплоносителей. К недостаткам - сложность изготовления и ремонта и пригодность работы под из­быточным давлении не свыше 1,0 МПа.

Пластинчатые теплообменники имеют плоские по­верхности теплообмена. Обычно такие теплообменники применя­ют для теплоносителей, коэффициенты теплоотдачи которых оди­наковы.

Недостатками изготовлявшихся до недавнего времени пластин­чатых теплообменников являлись малая герметичность и незначи­тельные перепады давлений между теплоносителями.

В последнее время изготовляют компактные разборные плас­тинчатые теплообменники, состоящие из штампованных метал­лических листов с внешними выступами, расположенными в ко­ридорном или шахматном порядке. Такие конструкции приме­няются для теплообмена между жидкостями и газами и работают при перепадах давлений до 12 МПа. На рис. 4.8 представлено не­сколько конструкций теплообменников такого типа. Благодаря незначительному расстоянию между пластинами (6...8 мм) такие теплообменники весьма компактны. Удельная поверхность нагре­ва F/V составляет 200...300 м 2 /м 3 . Поэтому пластинчатые теплооб­менники в ряде случаев вытесняют трубчатые и спиральные.

Но такой конструкции присущи следующие недостат­ки: трудность чистки внутри каналов, ремонта, частичной заме­ны поверхности теплообмена, а также невозможность изготовле­ния пластинчатых теплообменников из чугуна и хрупких матери­алов и длительная эксплуатация.

В настоящее время в системах теплоснабжения жилищно-ком­мунальных хозяйств и ряда промышленных предприятий в каче­стве подогревателей горячего водоснабжения (ГВС) и отопления устанавливаются пластинчатые теплообменники (рис. 4.8) вместо ранее используемых для этих целей традиционных секционных кожухотрубных подогревателей. Это связано с целым рядом обстоя­тельств и преимуществ:

1. Коэффициент теплопередачи в пластинчатых теплообменни­ках в 3...4 раза больше, чем в кожухотрубных, благодаря специальному гофрированному профилю проточной части пластины, обеспечивающему высокую степень турбулизации потоков тепло­носителей. Соответственно в 3...4 раза поверхность пластинчатых теплообменников меньше, чем кожухотрубных.

Рис. 4.8. Пластинчатый водоводяной теплообменник «Теплотекс»:

а - общий вид; б - схема движения теплоносителей

2. Пластинчатые теплообменники имеют малую металлоем­кость, очень компактны, их можно установить в небольшом по­мещении.

3. В отличие от кожухотрубных они легко разбираются и быстро чистятся. При этом не требуется демонтаж подводящих трубопро­водов.

4. В пластинчатом теплообменнике можно легко и быстро заме­нить пластину или прокладку, а также увеличить его поверхность, если со временем возрастет тепловая нагрузка.

Секционные кожухотрубные теплообменники трудно точно рас­считать на требуемую тепловую производительность и допусти­мые потери напора, так как поверхность одной секции велика и Достигает 28 м 2 (при D y = 300 мм).

Пластинчатые теплообменники набираются из отдельных пла­стин, поверхность нагрева которых, как правило, не превышает одного метра. Это обстоятельство в сочетании с оптимально выб­ранным типом пластины позволяет точно без лишнего запаса выб­рать теплопередающую поверхность теплообменника.

По своим техническим характеристикам теплообменники «Теплотекс» являются разборными и одноходовыми; материал пласти­ны - сталь ALSL 316; толщина пластины - 0,5 ...0,6 мм; матерная прокладки - резина EPDM; максимальная рабочая температуря теплоносителя - 150 °С; рабочее давление - 1... 2,5 МПа; расходы воды в зависимости от типа теплообменника от 2 до 100 кг/с; поверхность - от 1,5 до 373 м 2 .

Ребристые теплообменники применяются в тех случаях, когда коэффициент теплоотдачи для одного из теплоно­сителей значительно ниже, чем для второго. Поверхность теп­лообмена со стороны теплоносителя с низким значением α уве­личивают по сравнению с поверхностью теплообмена со стороны другого теплоносителя. В таких аппаратах поверхность теплообмена имеет на одной стороне ребра различной формы (рис. 4.9). Как видно из рисунка, ребристые теплообменники изготовляют самых различных конструкций. При этом ребра выполняю» поперечными, продольными, в виде игл, спиралей, из витой проволоки и т.д.

Рис. 4.9. Типы ребристых теплообмен­ников:

а - пластинчатый; б - чугунная труба с круглыми ребрами; в - трубка со спираль­ным оребрением; г - чугунная труба с внут­ренним оребрением; д - плавниковое оребрение трубок; е - чугунная труба с двусто­ронним игольчатым оребрением; ж - про­волочное (биспиральное) оребрение трубок; з - продольное оребрение труб; и - много­ребристая трубка

Теплообменником называется устройство, в котором производится передача тепла между теплоносителями.

Принцип действия

Кожухотрубные теплообменники относятся к типу рекуперативных, где среды разделены стенками. Работа их заключается в процессах теплообмена между жидкостями. При этом может происходить изменение их агрегатного состояния. Теплообмен также может производиться между жидкостью и паром или газом.

Преимущества и недостатки

Кожухотрубные теплообменники распространены, благодаря следующим положительным качествам:

  • стойкость к механическим воздействиям и гидроударам;
  • невысокие требования к чистоте сред;
  • высокая надежность и долговечность;
  • широкий модельный ряд;
  • возможность применения с разными средами.

К недостаткам данного типа моделей относятся:

  • малая величина коэффициента теплопередачи;
  • значительные габариты и высокая металлоемкость;
  • высокая цена из-за повышенной металлоемкости;
  • необходимость применения устройств с большим запасом в связи с заглушкой поврежденных трубок при ремонтах;
  • колебания уровня конденсата нелинейно изменяет теплообмен в устройствах горизонтального исполнения.

Кожухотрубные теплообменники обладают низким коэффициентом теплопередачи. Отчасти это связано с тем, что пространство корпуса в 2 раза больше общего поперечного сечения трубок. Применение направляющих перегородок дает возможность повысить скорость жидкости и улучшить теплообмен.

В межтрубном пространстве проходит теплоноситель, а по трубкам подается нагреваемая среда. Аналогичным образом она может также охлаждаться. Эффективность теплообмена обеспечивается за счет увеличения числа трубок или созданием поперечного тока внешнего теплоносителя.

Компенсация температурных удлинений

Температура теплоносителей разная и в результате происходит тепловая деформация элементов конструкции. Кожухотрубный теплообменник выполняется с компенсацией удлинения или без нее. Жесткое крепление трубок допускается при разности температуры между ним и корпусом до 25-30 0 С. Если она превышает эти пределы, применяются следующие температурные компенсаторы.

  1. "Плавающая" головка - одна из решеток не имеет соединение с кожухом и свободно перемещается в осевом направлении при удлинении трубок. Конструкция является наиболее надежной.
  2. На корпусе выполнен линзовый компенсатор в виде гофра, который может расширяться или сжиматься.
  3. Сальниковый компенсатор установлен на верхнем днище, который имеет возможность перемещаться вместе с решеткой при температурном расширении.
  4. U-образные трубы свободно удлиняются в среде теплоносителя. Недостатком является сложность изготовления.

Типы кожухотрубных теплообменников

Конструктивное исполнение аппаратов отличается простотой, на них всегда есть спрос. Цилиндрическим корпусом служит стальной кожух большого диаметра. На его кромках выполнены фланцы, на которых установлены крышки. В трубных досках внутри корпуса закреплены сваркой или развальцовкой трубные пучки.

Материалом для трубок служит сталь, медь, латунь, титан. Стальные доски крепят между фланцами или приваривают к кожуху. Между ними и корпусом внутри образуются камеры, через которые проходят теплоносители. Также там имеются перегородки, изменяющие движение жидкостей, проходящие через кожухотрубные теплообменники. Конструкция позволяет изменить скорость и направление потока, проходящего между трубками, тем самым увеличив интенсивность теплообмена.

Устройства могут располагаться в пространстве вертикально, горизонтально или с наклоном.

Разные типы кожухотрубных теплообменников отличаются расположением перегородок и устройством компенсаторов температурных удлинений. При малом числе трубок в пучке кожух имеет небольшой диаметр, и поверхности теплообмена получаются небольшими. Для их увеличения теплообменники последовательно соединяются в секции. Самой простой является конструкция "труба в трубе", которую часто изготавливают самостоятельно. Для этого необходимо правильно подобрать диаметры внутренней и наружной трубы и скорость потоков теплоносителей. Удобство чистки и ремонта обеспечивается за счет колен, которыми соединяются соседние секции. Эту конструкцию часто используют как пароводяные кожухотрубные теплообменники.

Спиральные теплообменные аппараты представляют собой каналы, выполненные прямоугольной формы и сваренные из листов, по которым перемещаются теплоносители. Достоинством является большая поверхность контакта с жидкостями, а недостатком - низкое допускаемое давление.

Новые конструкции теплообменников

В наше время начинает развиваться производство компактных теплообменников с рельефными поверхностями и интенсивным движением жидкостей. В результате их технические характеристики приближаются к пластинчатым аппаратам. Но производство последних также развивается, и догнать их сложно. Замена кожухотрубных теплообменников на пластинчатые целесообразна, благодаря следующим преимуществам:

К недостатку относится быстрая загрязненность пластин из-за малой величины зазоров между ними. Если хорошо фильтровать теплоносители, теплообменный аппарат будет работать долго. Мелкие частицы не удерживаются на полированных пластинах, а турбулизация жидкостей также предупреждает осаждение загрязнений.

Повышение интенсивности теплообмена аппаратов

Специалисты постоянно создают новые кожухотрубные теплообменники. Технические характеристики улучшаются за счет применения следующих способов:


Турбулизация потоков жидкостей значительно уменьшает солеотложение на стенках труб. За счет этого не требуются мероприятия по их очистке, которые необходимы для гладких поверхностей.

Производство кожухотрубных теплообменников с внедрением новых методов позволяет повысить в 2-3 раза эффективность теплоотдачи.

Учитывая дополнительные энергозатраты и стоимость, производственники чаще стараются заменить теплообменник на пластинчатый. По сравнению с обычными кожухотрубными они лучше по теплопередаче на 20-30 %. Это больше связано с освоением производства новой техники, которое пока идет со сложностями.

Эксплуатация теплообменников

Аппараты нуждаются в периодическом осмотре и контроле за работой. Параметры, например, температура, измеряются по их значениям на входе и выходе. Если эффективность работы снизилась, нужно проверить состояние поверхностей. Особенно влияют солевые отложения на термодинамические параметры теплообменников, где малая величина зазоров. Очистка поверхностей производится химическим способом, а также за счет применения ультразвуковых колебаний и турбулизации потоков теплоносителей.

Ремонт кожухотрубных аппаратов в основном заключается в запаивании прохудившихся трубок, что ухудшает их технические характеристики.

Заключение

Оптимальные кожухотрубные теплообменники конкурируют с пластинчатыми и могут применяться во многих областях техники. Новые конструкции имеют значительно меньшие габариты и металлоемкость, что позволяет снизить рабочие площади и уменьшить затраты на создание и эксплуатацию.

Смонтированная и готовая к работе пластинчатая теплообменная установка отличается небольшими габаритами и высоким уровнем производительности. Так, удельная рабочая поверхность такого аппарата может достигать 1,500 м 2 /м 3 .Конструкция таких аппаратов включает набор гофрированных пластин, которые отделяются друг от друга прокладками. Прокладки образуют герметичные каналы. Среда, отдающая тепло течет в пространстве между полостями, а внутри полостей находится среда, которая поглощает тепло или наоборот. Пластины монтируются на штанговой раме и расположены плотно относительно друг друга.

Каждая пластина оснащена следующий набор прокладок:

  • прокладка по периметру, которая ограничивает канал для теплоносителя и два отверстия его входа и выхода;
  • две малые прокладки, которые изолируют два других угловых отверстия для прохода второго теплового носителя.

Таким образом, конструкция имеет четыре раздельных канала для входа и выхода двух сред, участвующих в теплообменных процессах. Данный тип аппаратов способен распределять потоки по всем каналам параллельно или последовательно. Так, при необходимости, каждый поток может проходить по всем каналам или определенным группам.

К достоинствам данного типа аппаратов принято относить интенсивность теплообменного процесса, компактность, а также возможность полного разбора агрегата с целью очистки. К недостаткам причисляют необходимость скрупулезной сборки для сохранения герметичности (как результат большого количества каналов). Кроме того, минусами такой конструкции является склонность к коррозии материалов, из которых изготовлены прокладки и ограниченная тепловая стойкость.

В случаях, когда возможно загрязнение поверхности нагрева одним из теплоносителей, используют агрегаты, конструкция которых состоит из попарно сваренных пластин. Если загрязнение нагреваемой поверхности исключено со стороны обоих теплоносителей, применяются сварные неразборные теплообменные аппараты (как, например, аппарат с волнообразными каналами и перекрестным движением теплоносителей).

Принцип действия пластинчатого теплообменника

Пластинчатый теплообменник для дизельного топлива

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 37350,00 20000,00
Температура на входе (°C) 45,00 24,00
Температура на выходе (°C) 25,00 42,69
Потеря давления (bar) 0,50 0,10
Теплообмен (кВт) 434
Термодинамические свойства: Дизельное топливо Вода
Удельный вес (кг/м³) 826,00 994,24
2,09 4,18
Теплопроводимость (Вт/м*K) 0,14 0,62
Средняя вязкость (мПа*с) 2,90 0,75
Вязкость у стенки (мПа*с) 3,70 0,72
Подводящий патрубок B4 F3
Отводящий патрубок F4 B3
Исполнение рамы / пластин:
2 х 68 + 0 х 0
Расположение пластин (проход*канал) 1 х 67 + 1 х 68
Количество пластин 272
324,00
Материал пластин 0.5 мм AL-6XN
NITRIL / 140
150,00
16,00 / 22,88 PED 97/23/EC, Kat II, Modul Al
16,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
DN 150 Фланец St.37PN16
DN 150 Фланец St.37PN16
Объем жидкости (л) 867
Длина рамы (мм) 2110
Макс.число пластин 293

Пластинчатый теплообменник для сырой нефти

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 8120,69 420000,00
Температура на входе (°C) 125,00 55,00
Температура на выходе (°C) 69,80 75,00
Потеря давления (bar) 53,18 1,13
Теплообмен (кВт) 4930
Термодинамические свойства: Пар Сырая нефть
Удельный вес (кг/м³) 825,00
Удельная теплоемкость (кДж/кг*K) 2,11
Теплопроводимость (Вт/м*K) 0,13
Средняя вязкость (мПа*с) 20,94
Вязкость у стенки (мПа*с) 4,57
Степень загрязнения (м²*K/кВт) 0,1743
Подводящий патрубок F1 F3
Отводящий патрубок F4 F2
Исполнение рамы / пластин:
Расположение пластин (проход*канал) 1 х 67 + 0 х 0
Расположение пластин (проход*канал) 2 х 68 + 0 х 0
Количество пластин 136
Фактическая поверхность нагрева (м²) 91.12
Материал пластин 0.6 мм AL-6XN
Материал прокладки / Макс. темп. (°C) VITON / 160
Макс. расчетная температура (C) 150,00
Макс. рабочее давление /испыт. (bar) 16,00 / 22,88 PED 97/23/EC, Kat III, Modul В+C
Макс. дифференциальное давление (bar) 16,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
Присоединения на горячей стороне DN 200 Фланец St.37PN16
Присоединения на холодной стороне DN 200 Фланец St.37PN16
Объем жидкости (л) 229
Длина рамы (мм) 1077
Макс.число пластин 136

Пластинчатый теплообменник

Наименование Горячая сторона Холодная сторона Расход (кг/ч) 16000,00 21445,63 Температура на входе (°C) 95,00 25,00 Температура на выходе (°C) 40,00 45,00 Потеря давления (bar) 0,05 0,08 Теплообмен (кВт) 498 Термодинамические свойства: Азеотропная смесь Вода Удельный вес (кг/м³) 961,89 993,72 Удельная теплоемкость (кДж/кг*K) 2,04 4,18 Теплопроводимость (Вт/м*K) 0,66 0,62 Средняя вязкость (мПа*с) 0,30 0,72 Вязкость у стенки (мПа*с) 0,76 0,44 Степень загрязнения (м²*K/кВт) Подводящий патрубок F1 F3 Отводящий патрубок F4 F2 Исполнение рамы / пластин: Расположение пластин (проход*канал) 1 х 29 + 0 х 0 Расположение пластин (проход*канал) 1 х 29 + 0 х 0 Количество пластин 59 Фактическая поверхность нагрева (м²) 5,86 Материал пластин 0.5 мм AL-6XN Материал прокладки / Макс. темп. (°C) VITON / 140 Макс. расчетная температура (C) 150,00 Макс. рабочее давление /испыт. (bar) 10,00 / 14,30 PED 97/23/EC, Kat II, Modul Аl Макс. дифференциальное давление (bar) 10,00 Тип рамы / Покрытие IG No 1 / Категория C2 RAL5010 Присоединения на горячей стороне DN 65 Фланец St.37PN16 Присоединения на холодной стороне DN 65 Фланец St.37PN16 Объем жидкости (л) 17 Длина рамы (мм) 438 Макс.число пластин 58

Пластинчатый теплообменник для пропана

Наименование Горячая сторона Холодная сторона
Расход (кг/ч) 30000,00 139200,00
Температура на входе (°C) 85,00 25,00
Температура на выходе (°C) 30,00 45,00
Потеря давления (bar) 0,10 0,07
Теплообмен (кВт) 3211
Термодинамические свойства: Пропан Вода
Удельный вес (кг/м³) 350,70 993,72
Удельная теплоемкость (кДж/кг*K) 3,45 4,18
Теплопроводимость (Вт/м*K) 0,07 0,62
Средняя вязкость (мПа*с) 0,05 0,72
Вязкость у стенки (мПа*с) 0,07 0,51
Степень загрязнения (м²*K/кВт)
Подводящий патрубок F1 F3
Отводящий патрубок F4 F2
Исполнение рамы / пластин:
Расположение пластин (проход*канал) 1 х 101 + 0 х 0
Расположение пластин (проход*канал) 1 х 102 + 0 х 0
Количество пластин 210
Фактическая поверхность нагрева (м²) 131,10
Материал пластин 0.6 мм AL-6XN
Материал прокладки / Макс. темп. (°C) NITRIL / 140
Макс. расчетная температура (C) 150,00
Макс. рабочее давление /испыт. (bar) 20,00 / 28,60 PED 97/23/EC, Kat IV, Modul G
Макс. дифференциальное давление (bar) 20,00
Тип рамы / Покрытие IS No 5 / Категория C2 RAL5010
Присоединения на горячей стороне DN 200 Фланец AISI 316 PN25 DIN2512
Присоединения на холодной стороне DN 200 Фланец AISI 316 PN16
Объем жидкости (л) 280
Длина рамы (мм) 2107
Макс.число пластин 245

Описание пластинчато-ребристых теплообменных аппаратов

Удельная рабочая поверхность данного аппарата может достигать 2,000 м 2 /м 3. К плюсам таких конструкций принято относить:

  • возможность теплообмена между тремя и более теплоносителями;
  • небольшой вес и объем.

Конструктивно пластинчато-ребристые теплообменники состоят из тонких пластин, между которыми находятся гофрированные листы. Данные листы припаяны к каждой пластине. Таким образом, теплоноситель разбивается на мелкие потоки. Аппарат может состоять из любого числа пластин. Теплоносители могут перемещаться:

  • прямотоком;
  • перекрестным потоком.

Существуют следующие типы ребер:

  • гофрированные (рифленые), образующие волнистую линию вдоль потока;
  • прерывистые ребра, т.е. смещенные относительно друг друга;
  • чешуйчатые ребра, т.е. имеющие прорези, которые отогнуты в одну или разные стороны;
  • шиповидные, т.е. изготовленные из проволоки, которые могут располагаться в шахматном или коридорном порядке.

Пластинчато-ребристые теплообменные аппараты применяют как регенеративные теплообменники.

Блочные графитовые теплообменные аппараты: описание и применение

Теплообменные аппараты , выполненные из графита, характеризуются следующими качествами:

  • высокой стойкостью к коррозии;
  • высоким уровнем проводимости тепла (может достигать до 100 Вт/(м·К)

Благодаря указанным качествам, теплообменники данного типа широко используются в химической промышленности. Наибольшее распространение получили блочные графитовые аппараты, основным элементом которых является графитовый блок в форме параллелепипеда. В блоке есть непересекающиеся отверстия (вертикальные и горизонтальные), которые предназначаются для движения теплоносителей. Конструкция блочного графитового теплообменника может включать в себя один и более блоков. По горизонтальным отверстиям в блоке осуществляется двухходовое движение теплоносителя, которое возможно благодаря боковым металлическим плитам. Теплоноситель, который перемещается по вертикальным отверстиям, совершает один или два хода, что определяется конструкцией крышек (верхней и нижней). В теплообменниках с увеличенными боковыми гранями, теплоноситель, двигающийся вертикально может делать два или четыре хода.

Графитовый теплообменник, пропитанный фенолоальдегидным полимером, кольцевого блочного типа, с поверхностью теплообмена 320 м 2

Графитовый теплообменник кольцевого блочного типа для H2SO4

Технические характеристики:

Охладитель
Наименование Размерность Горячая сторона Холодная сторона
Вход Выход Вход Выход
Среда H2SO4 (94%) Вода
Расход м³/ч 500 552,3
Рабочая тепература °C 70 50 28 40
Физ. Свойства
Плотность г/cм³ 1,7817 1,8011 1
Удельная теплоёмкость ккал/кг °C 0,376 0,367 1
Вязкость 5 11,3 0,73
Теплопроводность ккал/чм°C 0,3014 0,295 0,53
Поглощённое тепло ккал/ч 6628180
Исправленная средняя разность температур °C 25,8
Перепад давления (допуст./расч.) кПа 100/65 100/45
Коэффициент теплопередачи ккал/чм²°C 802,8
Коэффициент загрязнения ккал/чм²°C 5000 2500
Расчётные условия
Расчётное давление бар 5 5
Рсчётная температура °C 100 50
Спецификация / материалы
Требуемая площадь поверхности теплопередачи м² 320
Прокладки, материал тефлон (фторопласт)
Блоки, материал Графит, пропитка фенольно-альдегидным полимером
Размеры (диаметр×длина) мм 1400*5590
Внутренний диаметр канала, осевой / радиальный 20мм/14мм
Кол-во проходов 1 1
Кол-во блоков 14

Графитовый теплообменник для суспензии гидрата двуокиси титана и раствора серной кислоты

Технические характеристики:

Наименование Размерность Горячая сторона Холодная сторона
Вход Выход Вход Выход
Среда Суспензия гидрата двуокиси Титана и 20% H2SO4 Вода
Расход м³/ч 40 95
Рабочая тепература °C 90 70 27 37
Рабочее давление бар 3 3
Поверхность теплообмена м² 56,9
Физические свойства
Плотность кг/м³ 1400 996
Удельная теплоёмкость кДж/кг∙°C 3,55 4,18
Удельная теплопроводность Вт/м∙К 0,38 0,682
Динамическая вязкость сП 2 0,28
Термостойкость к загрязнению Вт/м²∙К 5000 5000
Перепад давления(рассчитанный) бар 0,3 0,35
Теплообмен кВт 1100
Средняя разница температур оС 47,8
Коэффициент теплопередачи Вт/м²∙К 490
Расчетные условия
Расчётное давление бар 5 5
Рсчётная температура °C 150 150
Материалы
Прокладки PTFE
Кожух Углеродистая сталь
Блоки Графит, пропитанный фенольной смолой

Теплопроводы для химической промышленности

Теплопровод является перспективным устройством, применяемым в химической отрасли с целью интенсификации процессов теплообмена. Теплопровод это полностью герметичная труба с любым профилем сечения, выполненная из металла. Корпус трубы футерован пористо-капиллярным материалом (фитилем), стекловолокном, полимерами, пористыми металлами и т.п. Количество подаваемого теплоносителя должно быть достаточным для пропитки фитиля. Предельная рабочая температура колеблется от любой низкой до 2000 °C. В качестве теплоносителя используют:

  • металлы;
  • высококипящие органические жидкости;
  • расплавы солей;
  • воду;
  • аммиак и т.п.

Одна часть трубы расположена в зоне отвода тепла, остальная - в зоне конденсации паров. В первой зоне образуются пары теплоносителя, во второй зоне они конденсируются. Конденсат возвращается в первую зону благодаря действию капиллярных сил фитиля. Большое количество центров парообразования способствует падению перегрева жидкости во время ее кипения. При этом существенно возрастает коэффициент теплоотдачи при испарении (от 5 до 10 раз). Показатель мощности теплопровода определяется капиллярным давлением.

Регенераторы

Регенератор имеет корпус, круглый или прямоугольный в сечении. Данный корпус изготавливается из листового металла или кирпича, в соответствии с температурой, поддерживаемой в процессе работы. Внутрь агрегата помещается тяжелый наполнитель:

  • кирпич;
  • шамот;
  • рифленый металл и т.п.

Регенераторы, как правило, являются парными аппаратами, поэтому через них одновременно протекает холодный и горячий газ. Горячий газ передает тепло насадке, а холодный получает его. Рабочий цикл состоит из двух периодов:

  • разогрев насадки;
  • охлаждение насадки.

Насадка из кирпича может выкладываться в различном порядке:

  • коридорный порядок (образует ряд прямых параллельных каналов);
  • шахматный порядок (образует каналы сложной формы).

Регенераторы могут оснащаться металлическими насадками. Перспективный аппаратом считается регенератор, оснащенный падающим плотным слоем зернистого материала.

Смесительные теплообменные аппараты. Конденсаторы смешения. Барботер. Охладители

Теплообмен веществ (жидкостей, газов, зернистых материалов), при их непосредственном соприкосновении или смешении отличается максимальной степенью интенсивностью. Применение такой технологии диктуется необходимостью технологического процесса. Для смешения жидкостей применяется:

  • емкостной аппарат, оснащенный мешалкой;
  • инжектор (используются также для непрерывного смешения газов).

Нагревание жидкостей может осуществляться посредством конденсации в них пара. Пар вводится сквозь множественные отверстия в трубе, которая изогнута в форме окружности или спирали и находится в нижней секции аппарата. Устройство, обеспечивающее протекания данного технологического процесса, называется барботером.

Охлаждение жидкости до температуры близкой к 0 °C, может осуществляться посредством ввода льда, который способен поглотить при таянии до 335 кДж/кг тепла либо сжиженных нейтральных газов, характеризующихся невысокой температурой испарения. Иногда применяют холодильные смеси, которые поглощают тепло после растворения в воде.

Жидкость может подогреваться посредством контакта с горячим газом и охлаждаться, соответственно, посредством контакта с холодным. Такой процесс обеспечивается скрубберами (вертикальными аппаратами), где навстречу восходящему потоку газа стекает поток охлаждаемой или нагреваемой жидкости. Скруббер можно наполнять различными насадками с целью увеличения поверхности контакта. Насадки разбивают поток жидкости на маленькие струйки.

К группе смесительных теплообменников также относятся конденсаторы смешения, функция которых состоит в конденсации паров посредством их прямого контакта с водой. Конденсаторы смешения могут быть двух типов:

  • прямоточные конденсаторы (пар и жидкость движутся в одном направлении);
  • противоточные конденсаторы (пар и жидкость движутся в противоположных направлениях).

Для увеличения площади контакта пара и жидкости, поток жидкости разбивается на мелкие струйки.

Воздушный охладитель с ребристыми трубами

Многие химические установки генерируют большое количество вторичного тепла, которое не регенерируется в теплообменниках и не может быть повторно использовано в процессах. Данное тепло выводится в окружающую среду и поэтому существует необходимость минимизировать возможные последствия. Для этих целей применяют различные типы охладителей.

Конструкция охладителей с ребристыми трубами состоит из ряда ребристых труб, внутри которых течет охлаждаемая жидкость. Наличие ребер, т.е. ребристость конструкции, значительно увеличивает поверхность охладителя. Ребра охладителя обдувают вентиляторы.

Данный тип охладителей используется в случаях, когда отсутствует возможность забора воды для целей охлаждения: например на месте монтажа химических установок.

Оросительные охладители

Конструкция оросительного охладителя представляет собой ряды последовательно смонтированных змеевиков, внутри которых движется охлаждаемая жидкость. Змеевики постоянно орошаются водой, за счет чего и происходит орошение.

Башенные охладители

Принцип действия башенного охладителя заключается в том, что подогретая вода разбрызгивается в верхней части конструкции, после чего стекает вниз по набивке. В нижней части конструкции за счет естественного подсоса, мимо стекающей воды струится поток воздуха, который поглощает часть тепла воды. Плюс, часть воды испаряется в процессе стекания, результатом чего также является потеря тепла.

К недостаткам конструкции относятся ее гигантские габариты. Так, высота башенного охладителя может достигать 100 м. Несомненным плюсом такого охладителя является функционирование без вспомогательной энергии.

Башенные охладители, оснащенные вентиляторами, работают по аналогии. С той разницей, что воздух нагнетается посредством данного вентилятора. Следует отметить, что конструкция с вентилятором значительно компактнее.


Теплообменник с поверхностью теплообмена 71,40 м²

Техническое описание:

Поз.1: Теплообменник

Температурные данные Сторона A Сторона B
Среда Воздух Дымовые (топочные) газы
Рабочее давление 0.028 бар изб. 0.035 бар изб.
Среда Газ Газ
Расход на входе 17 548.72 кг/ч 34 396.29 кг/ч
Расход на выходе 17 548.72 кг/ч 34 396.29 кг/ч
Температура на входе/выходе -40 / 100 °C 250 / 180 °C
Плотность 1.170 кг/м³ 0.748 кг/м³
Удельная теплоемкость 1.005 кДж/кг.К 1.025 кДж/кг.К
Теплопроводность 0.026 Вт/м.К 0.040 Вт/м.К
Вязкость 0.019 мПа.с 0.026 мПа.с
Скрытая теплота

Работа теплообменника

Описание теплообменника

Габариты

L1: 2200 мм
L2: 1094 мм
L3: 1550 мм
LF: 1094 мм
Вес: 1547 кг
Вес с водой: 3366 кг

Фланцевый погружной теплообменник 660 кВт

Технические характеристики:

380 В, 50 Гц, 2x660 кВт, 126 рабочих и 13 резервных ТЭНа, всего 139 ТЭНа, соединение в треугольник 21 канал по 31,44 кВт. Защита - NEMA тип 4,7

Рабочая среда: Газ регенерации (объемные проценты):
N2 - 85%, водяной пар-1,7%, CO2-12.3%, O2-0.9%, Sox-100 ppm, H2S-150ppm, NH3-200ppm. Присутствуют механические примеси - соли аммония, продукты коррозии.

Перечень документов, поставляемых с оборудованием:

Паспорт на фланцевую погружную нагревательную секцию с инструкцией по монтажу, пуску, останову, транспортированию разгрузке, хранению, сведение о консервации;
Чертеж общего вида секции;

Теплообменные аппараты из меди подходят для химически чистых и не агрессивных сред, например, таких как пресная вода. Этот материал обладает высоким коэффициентом теплопередачи. Недостатком таких теплообменников является довольно высокая стоимость.

Оптимальным решением для очищенных водных сред является латунь. По сравнению с теплообменным оборудованием из меди она дешевле и обладает более высокими характеристиками коррозионной стойкости и прочности. А также стоит отметить, что некоторые латунные сплавы устойчивы к морской воде и высоким температурам. Недостатком материала считается низкие показатели электро- и теплопроводности.

Наиболее распространенным материальным решением в теплообменных аппаратах является сталь. Добавление в состав различных легирующих элементов позволяет улучшить ее механические, физико-химические свойства и расширить диапазон применения. В зависимости от добавленных легирующих элементов сталь может применяться в щелочных, кислотных средах с различными примесями и при высоких рабочих температурах.

Титан и его сплавы качественный материал, с высокими прочностными и теплопроводными характеристиками. Данный материал очень легкий и находит применение в широком диапазоне рабочих температур. Титан и материалы на его основе проявляют хорошую коррозионную стойкость в большинстве сред кислотного или щелочного характера.

Неметаллические материалы применяют в тех случаях, когда требуется проведение теплообменных процессов в особо агрессивных и коррозионно активных средах. Они характеризуется высоким значением коэффициентом теплопроводности и стойкости к наиболее химически активным веществам, что делает их незаменимым материалом применяемым во многих аппаратах. Неметаллические материалы разделяют на два вида органические и неорганические. К органическим относят материалы на основе углерода, такие как графит и пластические массы. В качестве неорганических материалов применяют силикаты и керамику.

  • теплоноситель при протекании которого возможно выделение осадка преимущественно направляется с той стороны, с которой легче осуществить очистку теплопередающей поверхности;
  • теплоноситель оказывающий корродирующее воздействие направляют по трубам, это обусловлено меньшим требованием расхода коррозионностойкого материала;
  • для уменьшения потерь тепла в окружающую среду теплоноситель с высокой температурой направляют по трубам;
  • с целью обеспечения безопасности при использовании теплоносителя с высоким давлением принято пропускать его в трубах;
  • при протекании теплообмена между теплоносителями находящихся в разных агрегатных состояниях (жидкость-пар, газ), принято направлять жидкость в трубы, а пар в межтрубное пространство.

Подробнее о расчете и подборе теплообменного оборудования

Минимальная/максимальная расчетная температура металла для деталей под давлением: -39 / +30 ºС.

Для деталей не под давлением используется материал согласно EN 1993-1-10.
Классификация зоны: не опасная.
Категория коррозионности: ISO 12944-2: C3.

Тип присоединения труб к трубной доске: обварка.

Электрические двигатели

Исполнение: не взрывобезопасное
Класс защиты: IP 55

Частотные преобразователи

Предусмотрены для 50% электрических двигателей.

Вентиляторы

Лопасти изготовлены из усиленного материала алюминий/пластик с ручной регулировкой шага.

Уровень шума

Не превышает 85 ± 2 дБА на расстоянии 1 м и на высоте 1,5 м от поверхности.

Внешняя рециркуляция

Применяется.

Жалюзи

Верхние, входные и рециркуляционные жалюзи с пневматическим приводом.

Змеевик водяного подогревателя

Размещается на отдельной раме. Каждый подогреватель размещен под трубным пучком.

Вибрационные выключатели

Каждый вентилятор укомплектован вибрационным выключателем.

Стальные конструкции

Включают опоры, стержни, водоотводящие камеры. Комплектный пол для рециркуляции не входит в объем поставки.

Сетчатая защита

Сетчатая защита вентиляторов, вращающихся деталей.

Запасные части

Запасные части для сборки и запуска

  • Крепеж для стальных конструкций: 5%
  • Крепеж для крышек плит коллекторов: 2%
  • Крепеж для штуцеров воздушника и дренажа: 1 комплект каждого типа

Запасные части на 2 года эксплуатации (опционально)

  • Ремни: 10% (минимум 1 комплект каждого типа)
  • Подшипники: 10% (минимум 1 шт. каждого типа)
  • Прокладки для воздушника, дренажа: 2 шт. каждого типа
  • Крепеж для воздушника и дренажа: 2 комплекта каждого типа

Специальный инструмент

  • Один датчик уровня для установки шага лопастей вентилятора
  • Один комплект для ремонта оребрения

Техническая документация на русском языке (2 экз. + CD диск)

Для согласования рабочей документации:

  • Чертеж общего вида, включая нагрузки
  • Электрическая схема
  • Спецификация оборудования
  • План тестовых проверок

С оборудованием:

  • Основная документация о тестовых проверках согласно стандартов, кодов и других требований
  • Инструкция по эксплуатации
  • Комплексное описание агрегата

Тестовая и инспекционная документация:

  • План тестовых проверок на каждую позицию
  • Внутрицеховая инспекция
  • Гидростатический тест
  • Сертификаты на материалы
  • Паспорт сосуда давления
  • Инспекция TUV

Отгрузочная информация:

  • Трубный пучок полностью собран и протестирован
  • Змеевик теплофикационной воды полностью собран
  • Жалюзи полностью собраны
  • Водоотводящие камеры отдельными частями
  • Рециркуляционные жалюзи с плитами отдельными частями
  • Вентиляторы в сборе
  • Стальные конструкции отдельными частями
  • Электрические двигатели, осевые вентиляторы, вибрационные выключатели и запасные части в деревянных ящиках
  • Сборка на площадке с помощью крепежа (без сварки)

Объем поставки

Следующее оборудование и проектная документация включены в объем поставки:

  • Температурные и механические расчеты
  • Трубные пучки с заглушками для воздушника и дренажа
  • Вентиляторы в сборе
  • Электрические двигатели
  • Частотные преобразователи (50/% всех вентиляторов)
  • Вибрационные выключатели (100% всех вентиляторов)
  • Водоотводящие камеры
  • Опорные конструкции
  • Платформы обслуживания для опор и лестниц
  • Система внешней рециркуляции
  • Термодатчики на стороне воздуха
  • Жалюзи на рециркуляции/входе/выходе с пневмоприводом
  • Петли для подъема
  • Заземление
  • Поверхностная обработка
  • Запасные части для сборки и запуска
  • Запасные части на 2 года эксплуатации
  • Специальный инструмент
  • Ответные фланцы, крепеж и прокладки

Следующее оборудование не включено в объем поставки:

  • Услуги монтажа
  • Предварительная сборка
  • Анкерные болты
  • Теплоизоляция и огнезащита
  • Опоры для кабелей
  • Защита от града и камней
  • Платформа для доступа к электрическим двигателям
  • Электрические подогреватели
  • Шкаф управления для частотных преобразователей*
  • Материалы для электрического монтажа*
  • Соединения для датчиков давления и температуры*
  • Входные и выходные коллекторы, соединительные трубопроводы и фитинги*

Кожухотрубные теплообменники появились в начале ХХ века в связи с потребностями тепловых станций в теплообменниках с большой поверхностью, таких, как конденсаторы и подогреватели воды, работающие при относительно высоком давлении. Кожухотрубные теплообменники применяются в качестве конденсаторов, подогревателей и испарителей. В настоящее время их конструкция в результате специальных разработок с учетом опыта эксплуатации стала намного более совершенной. В те же годы началось широкое промышленное применение кожухотрубных теплообменников в нефтяной промышленности. Для эксплуатации в тяжелых условиях потребовались нагреватели и охладители массы, испарители и конденсаторы для различных фракций сырой нефти и сопутствующих органических жидкостей. Теплообменникам часто приходилось работать с загрязненными жидкостями при высоких температурах и давлениях, и поэтому их необходимо было конструировать так, чтобы обеспечить легкость ремонта и очистки.

С годами кожухотрубные теплообменники стали наиболее широко применяемым типом аппаратов. Это обусловлено прежде всего надежностью конструкции, большим набором вариантов исполнения для различных условий эксплуатации, в частности:

    однофазные потоки, кипение и конденсация по горячей и холодной сторонамтеплообменника с вертикальным или горизонтальным исполнением;

    диапазон давления от вакуума до высоких значений;

    в широких пределах изменяющиеся перепады давления по обеим сторонам вследствие большого разнообразия вариантов;

    удовлетворение требований по термическим напряжениям без существенного повышения стоимости аппарата;

    размеры от малых до предельно больших (5000 м 2);

    возможность применения различных материалов в соответствии с требованиями к стоимости, коррозии, температурному режиму и давлению;

    использование развитых поверхностей теплообмена как внутри труб, так и снаружи, различных интенсификаторов и т.д;

    возможность извлечения пучка труб для очистки и ремонта.

В кожухотрубчатом теплообменнике один из теплоносителей протекает по трубам, другой – по межтрубному пространству. Теплота от одного теплоносителя другому передается через поверхность стеной труб.

Кожухотрубчатые теплообменники бывают одноходовыми, здесь оба теплоносителя не меняя направления движутся по всему сечению (один по трубному, другой по межтрубному), и многоходовыми, в которых потоки с помощью дополнительных перегородок последовательно меняют направление, тем самым, увеличивая коэффициент теплоотдачи и скорость потока.

Основными элементами кожухотрубчатых теплообменников являются пучки труб, трубные решетки, корпус, крышки, патрубки. Концы труб крепятся в трубных решетках развальцовкой, сваркой и пайкой.

Для увеличения скорости движения теплоносителей с целью интенсификации теплообмена нередко устанавливают перегородки, как в трубном, так и в межтрубном пространствах.

Кожухотрубчатые теплообменники могут быть вертикальными, горизонтальными и наклонными в соответствии с требованиями технологического процесса или удобства монтажа. В зависимости от величины температурных удлинений трубок и корпуса применяют кожухотрубчатые теплообменники жесткой, полужесткой и нежесткой конструкции. Один из вариантов такого теплообменника представлен на рисунке 1.2.1.

Рис. 1.2 - Кожухотрубчатый теплообменник

Теплопередающая поверхность аппаратов может составлять от нескольких сотен квадратных сантиметров до нескольких тысяч квадратных метров.

Кожух (корпус) кожухотрубчатого теплообменника представляет собой трубу, сваренную из одного или нескольких стальных листов. Кожухи различаются главным образом способом соединения с трубной доской и крышками. Толщина стенки кожуха определяется давлением рабочей среды и диаметром кожуха, но принимается не менее 4 мм. К цилиндрическим кромкам кожуха приваривают фланцы для соединения с крышками или днищами. На наружной поверхности кожуха прикрепляют опоры аппарата.

В кожухотрубчатых теплообменниках проходное сечение межтрубного пространства в 2-3 раза больше проходного сечения трубок. Поэтому при одинаковых расходах теплоносителей, имеющих одинаковое агрегатное состояние, коэффициенты теплоотдачи на поверхности межтрубного пространства невысокие, что снижает коэффициент теплопередачи в аппарате. Устройство перегородок в межтрубном пространстве способствует увеличению скорости теплоносителя и повышению коэффициента теплопередачи.

КОЖУХОТРУБЧАТЫЕ ТЕПЛООБМЕННИКИ.

Теплообменники жесткого типа (рис. 8.3.2) имеют цилиндрический корпус 1 , в котором установлен трубный пучок 2, закрепленный в трубных решетках 4, в которых трубки закреплены развальцовкой или сваркой. Корпус аппарата закрыт крышками 5 и 6. Внутри корпуса установлены перегородки 3, создающие определенное направление движения потока и увеличивающие его скорость в корпусе (рис. 8.3.4).

Рис. 8.3.2. Кожухотрубчатый теплообменник жесткого типа:

1 - кожух (корпус); 2 - трубка; 3 - поперечная перегородка; 4 - трубная решетка; 5 - крышка; 6 - крышка (распределительная коробка); 3,8 - продольные перегородки соответственно в распределительной коробке и в корпусе.

Рис. 8.3.3. Кожухотрубчатый теплообменник с линзовым компенсатором на корпусе.

Для удлинения пути жидкости в корпусе пучки труб снабжают поперечными перегородками из листовой стали толщиной 5 мм и более. Расстояние между перегородками принимают от 0,2 м до 50 Д Н наружный диаметр теплообменной трубы. Геометрическая форма перегородок и их взаимное расположение определяют характер движения потока по корпусу теплооб­менника.

Рис. 8.3.4. Типы поперечных перегородок:

I – с секторным вырезом, обеспечивающим ток жидкости по винтовой линии;

II – с щелевым вырезом, обеспечивающим волнообразное движение;

III – с сегментным вырезом;

IV – кольцевые, обеспечивающие движение от периферии к центру, и наоборот.

Поперечные перегородки фиксируются одна по отношению к другой посредством распорных труб, прижимаемых к ним общими тягами (обычно четырьмя). Кроме технологического назначения поперечные перегородки служат также промежуточными опорами для трубного пучка, препятствуя прогибанию его при горизонтальном расположении аппарата.

Одна из теплообменивающихся сред движется по трубкам, а другая - внутри корпуса между трубками. В трубки пускают более загрязненную среду, а также среду с меньшим коэффициентом теплоотдачи, так как очистка наружной поверхности трубок затруднена, а скорости движения среды в межтрубном простран­стве меньше, чем в трубках.

Поскольку температуры теплообменивающихся сред различаются, корпус и трубки получают различные удлинения, что приводит к возникновению дополнительных напряжений в элементах теплообменника. При большой разности температур это может привести к деформации и даже разрушению трубок и корпуса, нарушению плотности развальцовки и т.п. Поэтому теплообмен­ники жесткого типа применяют при разности температур теплообменивающихся сред не более 50°С.

Теплообменники с линзовым компенсатором на корпусе (рис. 8.3.3 ) применяют для уменьшения температурных напряжений в аппаратах жесткого типа. Такие теплообменники имеют на корпусе линзовый компенсатор, за счет деформации которого снижаются температурные усилия в корпусе и трубках. Это снижение тем больше, чем больше число линз у компенсатора.

Теплообменники с плавающей головкой (рис. 8.3.5) нашли наи­более широкое применение. В этих аппаратах один конец трубного пучка закреплен в трубной решетке, связанной с корпусом (на рис. слева), а второй может свободно перемещаться относительно корпуса при температурных изменениях длины трубок. Это устраняет температурные напряжения в конструкции и позволяет работать с большими разностями температур теплообмениваю­щихся сред . Кроме того, возможна чистка трубного пучка и корпуса аппарата, облегчается замена труб пучка. Однако конструк­ция теплообменников с плавающей головкой более сложна, а плавающая головка недоступна для осмотра при работе аппарата.

Рис. 8.3.5. Кожухотрубчатый теплообменный аппарат с плавающей головкой:

1 – кожух; 2,3 – входная и выходная камеры (крышки); 4 – трубный пучок; 5 – трубные решётки; 6 – крышка плавающей головки; 7 – перегородки; 8 – струбцины крепления крышки; 9 – опоры; 10 – фундамент; 11 – межтрубные направляющие перегородки; 12 – скользящая опора трубного пучка; I, II – вход и выход греющего теплоносителя; III, IV – вход и выход нагреваемого потока.

Перегородки, устанавливаемые в распределительной камере и в плавающей головке, увеличивают число ходов в трубном пучке. Это позволяет увеличить скорость движения потока и коэффициент теплоотдачи ко внутренней стенке труб.

Межтрубное пространство аппаратов с плавающей головкой обычно выполняется одноходовым. При двух ходах в корпусе устанавливают продольную перегородку. Однако в этом случае требуется специальное уплотнение между перегородкой и корпусом. Поверхность теплообмена кожухотрубчатых теплообменников может составлять 1200 м 2 при длине труб от 3 до 9 м; условное давление достигает 6,4 МПа.

Теплообменники с U-образными трубками (рис. 8.3.6) имеют трубный пучок, трубки которого изогнуты в виде латинской буквы и, и оба конца закреплены в трубной решетке, что обеспечивает свободное удлинение трубок независимо от корпуса. Такие теплообменники применяют при повышенных давлениях. Среда, направляемая в трубки, должна быть достаточно чистой, так как очистка внутренней поверхности труб затруднена.

Рис. 8.3.5. Кожухотрубчатый теплообменник с плавающей головкой.

Рис.8.3.6. Кожухотрубчатый теплообменник с U-образными трубками

В зависимости от числа продольных перегородок в корпусе и распределительных коробках теплообменные кожухотрубчатые аппараты делятся на одно-, двух- и многоходовые как в трубном, так и в межтрубном пространстве. Так, на рис. 8.3.2 теплообменник является двухходовым как по трубному, так и по межтрубному пространству, что достигается установкой продольных перегородок 7 и 8.

теплообменники типа ""труба в трубе".

В отличие от кожухотрубчатых аппаратов, где в кожухе размещается пучок из нескольких сотен трубок, в аппаратах этого типа каждая трубка имеет свой индивидуальный кожух (рис. 8.3.7). Теплообменный аппарат набирается из нескольких таких секций, соединенных коллекторами на входе и выходе греющего теплоносителя. Применяют такие аппараты для нагрева вязких и высоковязких нефтепродуктов (нефти дизельного топлива, мазутов, гудронов).

Аппараты "труба в трубе" изготавливают неразборными и разборными. Первые из них используют для сред, не дающих отложений в межтрубном пространстве, внешние трубы которых соединены патрубками сваркой. Соединения внутренних труб у таких аппаратов могут быть жесткими (переходные двойники 3 приварены к трубкам) и разъемными (двойники на фланцах, как показано на рисунке). При жесткой системе теплообменник может применяться для таких сред, при использовании которых разность температур наружной и внутренней трубы должна быть не более 50°С.

Рис. 8.3.7. Секция четырехходового неразборного теплообменника типа "труба в трубе":

1, 2 – наружная и внутренняя трубы; 3 – поворотный двойник;I, II – вход и выход греющего теплоносителя; III, IV – вход и выход нагреваемого потока.

Рис. 8.3.8. Секция однопоточного разборного теплообменника типа "труба в трубе":

1 – внешние трубы; 2 – внутренние трубы; 3 – крышка; 4 – поворотные двойники; 5 –перегородка; 6 – трубная решетка; А – вход и выход более загрязненного потока; Б – вход и выход менее загрязненного потока

Разборные аппараты "труба в трубе" (рис. 8.3.8) выполняют из секций, где внешние трубы 4 объединяются общей крышкой 3, служащей для поворота потока теплоносителя из одной внешней трубы в другую, а внутренние трубы соединяются с помощью поворотных двойников на фланцах внутри этой крышки. Из таких секций может набираться батарея многопоточного аппарата, если расход теплоносителей большой (10–200 т/ч в трубе и до 300 т/ч в межтрубном пространстве). Преимущество разборных аппаратов "труба в трубе" состоит в том, что их можно регулярно (как и кожухотрубные) очищать от отложений и менять внутренние или внешние трубы в случае их повреждений или коррозии.

Обычно в аппаратах "труба в трубе" более загрязненный поток теплоносителя пускают по внутренним трубкам, а менее загрязненный – по межтрубному пространству.

В теплообменниках разборной конструкции внутренние трубы снаружной стороны могут иметь оребрение для увеличения площади теплообмена и повышения тем самым эффективности теплопередачи. Разборные теплообменники позволяют осуществлять чистку наружных и внутренних поверхностей труб, а также применять оребрённые внутренние трубы. Это дает возможность значительно увеличить количество переданного тепла . На рис 8.3.9 показаны оребрённые трубы.

Рис. 8.3.9. Оребрённые трубы:

а - ребра корытообразные приварные; б - ребра завальцованные; в - ребра выдавленные; г - ребра приварные шиповидные; д - ребра накатанные.

Поделиться: