Элеваторный узел системы отопления. Расчет водоструйного элеватора

В любом здании, подключенном к централизованной отопительной сети (или котельной), имеется элеваторный узел. Основная функция этого устройства заключается в понижении температуры теплоносителя с одновременным увеличением объема прокачиваемой воды в домовой системе.

Назначение узла

Элеваторные узлы устанавливаются в том случае, когда в жилой дом от ТЭЦ или котельной подается перегретая вода, температура которой может превышать 140 ºC. Подавать в квартиры кипяток недопустимо, так как это чревато ожогами и разрушениями чугунных радиаторов. Эти приборы не выносят резких температурных перепадов. Как оказалось, столь популярные сегодня полипропиленовые трубы также не любят высоких температур. И хотя они не разрушаются от давления горячей воды в системе, срок их службы значительно сокращается.

Перегретая вода, подаваемая из теплоэлектроцентрали, попадает сначала в элеваторный узел, где смешивается с охлажденной водой из обратного трубопровода жилого дома и вновь подается в квартиры.

Принцип работы и схема узла

Поступающая в жилой дом горячая вода имеет температуру, соответствующую температурному графику теплоэлектроцентрали. Преодолев задвижки и грязевые фильтры, перегретая вода поступает в стальной корпус, а затем через сопло в камеру, где происходит смешение. Разница давлений толкает струю воды в расширенную часть корпуса, при этом происходит ее соединение с охлажденным теплоносителем из отопительной системы здания.


Перегретый теплоноситель, имея пониженное давление, с высокой скоростью стремится через сопло в камеру для смешивания, создавая разряжение. Как результат в камере за струей возникает эффект инжекции (подсасывания) теплоносителя из обратного трубопровода. Результатом смешения является вода, имеющая проектную температуру, которая и поступает в квартиры.


Схема элеваторного устройства дает детальное представление о функциональных возможностях этого аппарата.

Достоинства водоструйных элеваторов

Особенностью элеватора является одновременное выполнение двух задач: работать как смеситель и как циркуляционный насос. Примечательно, что функционирует элеваторный узел без затрат электроэнергии, так как принцип работы установки основан на использовании перепада давления на входе.


Применение водоструйных аппаратов имеет свои плюсы:

  • несложная конструкция;
  • невысокая стоимость;
  • надежность;
  • отсутствие потребности в электроэнергии.

С помощью новейших моделей элеваторов, оснащенных автоматикой, можно существенно экономить тепло. Это достигается путем регулирования температуры теплоносителя в зоне его выхода. Для достижения этой цели можно понижать температуру в квартирах ночью либо в дневное время, когда большинство людей находится на работе, учебе и пр.


Экономичный элеваторный узел отличается от обычного варианта наличием регулируемого сопла. Эти детали могут иметь различную конструкцию и уровень регулировки. Коэффициент смешения у аппарата с регулируемым соплом изменяется в пределах от 2 до 6. Как показала практика, этого вполне достаточно для отопительной системы жилого здания.

Стоимость оборудования с автоматической регулировкой значительно выше, чем цена обычных элеваторов. Но они более экономичны, функциональны и эффективны.

Возможные проблемы и неисправности

Несмотря на прочность приборов, иногда элеваторный узел отопления дает сбои. Горячая вода и высокое давление быстро находят слабые места и провоцируют поломки.


Это неизбежно случается, когда отдельные узлы имеют сборку ненадлежащего качества, расчет диаметра сопла выполнен неверно, а также по причине образования засоров.

Шум

Элеватор отопления, работая, может создавать шум. Если такое наблюдается, значит, в выходной части сопла в процессе эксплуатации образовались трещины или задиры.


Причина появления неровностей кроется в перекосах сопла, вызванных подачей теплоносителя под высоким давлением. Такое случается, если избыточный напор не дросселируется регулятором расхода.

Не соответствие температуры

Качественную работу элеватора можно поставить под сомнение и тогда, когда температура на входе и выходе слишком различается с температурным графиком. Скорее всего, причиной тому завышенный диаметр сопла.

Не правильный расход воды

Неисправный дроссель приведет к изменению расхода воды в сравнении с проектным значением.


Такое нарушение легко определить по изменению температуры во входящей и обратной трубопроводных системах. Проблема решается путем ремонта регулятора расхода (дросселя).

Неисправные элементы конструкции

Если схема присоединения отопительной системы к наружной тепловой магистрали имеет независимый вид, то причину некачественной работы элеваторного узла могут вызвать неисправные насосы, водонагревательные узлы, запорная и предохранительная арматура, всевозможные утечки в трубопроводах и оборудовании, неисправность регуляторов.


К основным причинам, негативно влияющим на схему и принцип работы насосов, можно отнести разрушение эластичных муфт в соединениях насоса и валов электродвигателя, износ шарикоподшипников и разрушение посадочных мест под них, образование свищей и трещин на корпусе, старение сальников. Большинство перечисленных неисправностей устраняется ремонтом.

Проблему свищей и трещин на корпусе решают его заменой.

Неудовлетворительная работа водонагревателей наблюдается, когда нарушена герметичность труб, произошло их разрушение либо слипание трубного пучка. Решение проблемы состоит в замене труб.

Засоры

Засоры – это одна из распространенных причин плохого теплоснабжения. Их образование связано с попаданием грязи в систему, когда грязевые фильтры неисправны. Увеличивают проблему и отложения продуктов коррозии внутри труб.

Уровень засорения фильтров можно определить по показаниям манометров, установленных перед фильтром и после него. Значительный перепад давления подтвердит либо опровергнет предположение о степени засоренности. Для прочистки фильтров достаточно отвести грязь через спускные устройства, находящиеся в нижней части корпуса.

Любые неполадки трубопроводов и отопительного оборудования должны устраняться незамедлительно.


Незначительные замечания, не влияющие на работу отопительной системы, в обязательном порядке регистрируются в специальной документации, их включают в план текущих или капитальных ремонтных работ. Ремонт и устранение замечаний происходит в летнее время до начала очередного отопительного сезона.

Безусловно, отопление является важнейшей системой жизнеобеспечения в любом доме. Его можно встретить в любых постройках, которые получают центральное теплоснабжение. В такой системе очень важными механизмами являются элеваторные узлы отопления.

Из каких частей они состоят, как функционируют и вообще, что такое элеваторный узел отопления в этой статье мы и будем рассматривать.

Элеватор что это такое

Чтобы понять и разобраться, что собой представляет этот элемент, лучше всего спуститься в подвал здания и посмотреть воочию. Но если у вас нет желания покидать ваш дом, то можно ознакомиться с фото и видео файлами в нашей галерее. В подвале среди множества задвижек, клапанов, трубопроводов, манометров и термометров вы обязательно найдете этот узел.

Предлагаем вначале разобраться в принципе работы. К зданию подводится горячий от районной котельной, и отводиться охлажденный.

Для этого требуются:

  • Трубопровод подачи – выполняет поставку горячего теплоносителя к потребителю;
  • Трубопровод обратки – выполняет работу по отводу охлажденного теплоносителя и возврата его в районную котельную.

На несколько домов, а в некоторых случаях и на каждый, если дома большие, оборудуются тепловые камеры. В них происходит распределение теплоносителя между домами, а также установлена запорная арматура, которая служит для отсечения трубопроводов. Также в камерах могут выполняться дренажные приспособления, которые служат для опустошения труб, например, для ремонтных работ. Далее процесс зависит от температуры теплоносителя.

В нашей стране есть несколько основных режимов работы районных котельных:

  • Подача 150 и обратка 70 градусов Цельсия;
  • Соответственно 130 и 70;
  • 95 и 70.

Выбор режима зависит от широт проживания. Так, например, для Москвы будет достаточно графика 130/70, а для Иркутска понадобится график 150/70. Названия этих режимов имеют числа максимальной нагрузки трубопроводов. Но в зависимости от температуры воздуха за окном, котельная может работать при температурах 70/54.

Делается это для того, чтобы не было перегрева в помещениях и чтобы в них было комфортно находиться. Выполняется эта регулировка на котельной и является представителем центрального типа регулировки. Интересным является тот факт, что в европейских странах выполняется другой тип регулировки – местный. То есть происходит регулировка на самом объекте теплоснабжения.

Тепловые сети и котельные в таком случаях работают по максимальному режиму. Стоит сказать, что наиболее высокая производительность котельных агрегатов достигается именно при максимальных нагрузках. приходит к потребителю и уже по месту регулируется специальными механизмами.

Эти механизмы состоят из:

  • Датчиков температуры наружного воздуха и внутреннего;
  • Сервопривода;
  • Исполнительного механизма с клапаном.

Такие системы оборудуются индивидуальными приборами для учета тепловой энергии, за счет этого достигается большая экономия денежных ресурсов. По сравнению с элеваторами такие системы менее надежны и долговечны.

Так вот, если теплоноситель имеет температуру не более 95 градусов, то главной задачей является качественное физическое распределения тепла по всей системе. Для достижения этих целей применяют коллекторы и балансировочные краны.

Но в том случае, когда температура выше 95 градусов, то её нужно немного уменьшить. Этим и занимаются элеваторы в системе отопления, они подмешивают к подающему трубопроводу охлажденную воду с обратного.

Важно. Процесс регулировки элеваторным узлом является самым простым и дешевым механизмом, главное правильно произвести расчет элеватора отопления.

Функции и характеристики

Как мы уже с вами разобрались, элеватор системы отопления занимается охлаждением перегретой воды до заданной величины. Затем эта подготовленная вода поступает в .

Этот элемент выполняет повышение качества работы всей системы здания и при правильном монтаже и подборе выполняет две функции:

  • Смесительную;
  • Циркуляционную.

Преимущества, которыми обладает элеваторная система отопления:

  • Простота конструкции;
  • Высокая эффективность;
  • Не требуется подключение к электрическому току.

Недостатки:

  • Нужен точный и качественный расчет и подбор элеватора отопления;
  • Нет возможностей регулировать температуру на выходе;
  • Нужно соблюдать перепад давления между подачей и обраткой в районе 0,8-2 бар.

В наше время такие элементы получили огромное распространение в хозяйстве тепловых сетей. Это обуславливается их преимуществами, такими как устойчивость к изменению гидравлических и температурных режимов. К тому же они не требуют постоянного присутствия человека.

Важно. Расчет, подбор и настройку элеваторов не стоит выполнять своими руками, это дело лучше оставить для специалистов, так как ошибка выбора может привести к большим проблемам.

Конструкция

Элеватор состоит из:

  • Камеры разрежения;
  • Сопла;
  • Струйного элеватора.

Среди теплотехников есть понятие как обвязка узла элеватора. Оно заключается в установке необходимой запорной арматуры, манометров и термометров. Все это в сборе и является узлом.

Важно! На сегодняшний день производители реализуют элеваторы, которые способны благодаря электрическому приводу выполнять регулировку сопла. При этом есть возможность выполнять регулировку расхода теплоносителя в автоматическом режиме. Но стоит также отметить, что такое оборудование пока не отличается высокой степенью надежности.

Надежность на долгие годы

Технический прогресс не останавливается ни на секунду. Все больше новых технологий находят свое применение при теплофикации зданий. Есть одна альтернатива привычным элеваторам – это оборудование с авто регулировкой температуры. Их принято считать более энергосберегающими и экономичными, но цена их выше. К тому же они не могут работать без электроснабжения, причем периодически нуждаются в большой мощности. Что же лучше применять покажет лишь время.

Итоги

В этой статье мы выяснили, что такое элеватор в системе отопления, из чего он состоит и как работает. Как выяснилось, такое оборудование широко распространено благодаря своим неоспоримым преимуществам. Нет предпосылок для того, чтобы коммунальные предприятия отказались от них.

Альтернативы для этого оборудования есть, но они отличается своей высокой стоимостью, меньшей надежностью и энергоэффективностью, потому что требуют для своей работы электричество и периодические ремонты.

Для жилых зданий температура теплоносителя, поступающего в нагревательные приборы по санитарным нормам не должна превышать 95°С, а в магистралях тепловых сетей может подаваться перегретая вода температурой 130-150°С. Следовательно необходимо понижение температуры теплоносителя до требуемой величины. Достигается это с помощью элеватора , установленного в узле управления системой отопления здания. Принцип действия элеватора заключается в следующем: перегретая вода из подающей магистрали поступает в конусное съемное сопло, где скорость движения воды резко возрастает, в результате чего струя воды выходящая из сопла в камеру смешивания, подсасывает охлажденную воду из обратного трубопровода через перемычку в о внутреннюю полость элеватора. При этом в элеваторе происходит смешение перегретой и охлажденной воды, поступающей из системы отопления. Таким образом, вода требуемой температуры поступает в нагревательные приборы системы отопления. Что бы защитить элеватор от попадания крупных частиц в конус, что может частично или полностью прекратить его работу, перед элеватором обязательно устанавливают грязевик.

Широкое распространение элеваторов вызвано их постоянной устойчивой работой при изменении теплового и гидравлического режима в тепловых сетях. Так же элеваторы не требуют постоянного наблюдения, а регулировка его производительности заключается лишь в выборе правильного диаметра сопла. Подбор размеров и диаметров труб элеваторного узла, а так же выбор диаметра сопла должен осуществляться только в проектном бюро, имеющем соответствующую компетенцию.


Схема элеваторного узла

1 - подющий теплопровод; 2 - обратный теплопровод; 3 - задвижки; 4 - водомер; 5 - грязевики; 6 - манометры; 7 - термометры; 8 - элеватор; 9 - нагревательные приборы системы отопления.

Рассмотрим подробнее принцип действия элеватора:

1 - сопло; 2 - камера всасывания; 3 - камера смешения; 4 - диффузор.

Сетевая вода поступает в суживающееся сопло и на выходе приобретает значительную скорость, благодаря срабатыванию перепада давления в сопле от Р 1 до Р 0 . В результате давление в камере всасывания становится ниже Р 2 , и рабочая струя захватывает пассивные массы окружающей воды, передавая им часть своей энергии. Таким образом, происходит подсос воды из обратной линии. В камере смешения скорость потока выравнивается с некоторым возрастанием давления к концу камеры (примем это давление условно постоянным ввиду незначительности его повышения). В диффузоре поток тормозится, скорость снижается, а давление возрастает до Р 3 .

Основной характеристикой элеватора является коэффициент смешения (инжекции) - отношение количества инжектируемой воды G 2 к количеству воды, поступающей из тепловой сети G 1 :

U = G 2 / G 1 .

Чаще применяется другое соотношение, выводимое из уравнения теплового баланса элеватора:

G 1 c 1 t 1 + G 2 c 2 t 2 = G 3 c 3 t 3 .

При условии, что G 3 = G 2 + G 1 ,

U = (t 1 - t 3)/(t 3 - t 2).

Если тепловая сеть работает по графику 150 - 70 0 С, а система отопления по графику 95 - 70 0 С, то коэффициент смешения элеватора должен быть

U = (150 - 95)/(95 - 70) = 2,2.

Это означает, что на каждую единицу массы высокотемпературной сетевой воды должно приходиться при смешении 2,2 массы охлажденной обратной воды после системы отопления.

Схемы с элеватором уже не отвечают возросшим условиям надежности, качества и повышения экономичности систем теплоснабжения в целом. Кроме того, ограничивается возможность автоматического регулирования систем отопления.

Если для надежной работы элеватора перепад давлений между подающей и обратной линиями на абонентском вводе недостаточен, то применяют смесительные насосы. Они снизят температуру воды, подаваемой в систему отопления, и обеспечат циркуляцию.

Элеватор выбирается по диаметру горловины d Г в зависимости от располагаемой разности давлений в подающем и обратном теплопроводе на вводе в здание. Диаметр горловины элеватора d Г, мм, определяется по формуле 5.1:

G СО – расход воды в системе отопления, определяемый по формуле 5.2:

Q ОТ = 44443,6 Вт – тепловая мощность системы отопления всего здания;

ΔР СО – насосное давление, создаваемое элеватором, Па, определяется по формуле 5.3:

Δp ТС – разность давления в теплопроводах теплосети на вводе в здание, 75кПа;

u – коэффициент смешения в элеваторе, определяется по формуле 5.4:

Принимаем ближайший стандартный элеватор №1, имеющий параметры:

диаметр горловины d Г = 15 мм,

диаметр трубы d У = 40 мм,

длина элеватора L= 425 мм. (По прил. 8 методических указаний.)

Согласно принятых параметров рассчитаем диаметр сопла d С по формуле 5.5:

(5.5)

5.3 Гидравлический расчет системы отопления

Гидравлический расчет трубопроводов сводится к подбору диаметров подводок, стояков и магистралей таким образом, чтобы при заданном циркуляционном давлении к каждому прибору поступало расчетное количество теплоты (теплоносителя), равное тепловой мощности системы отопления данного помещения.

Для расчета необходимо выделить главное циркуляционное кольцо, проходящее через наиболее удаленный и нагруженный стояк наиболее нагруженной ветви. В нашем случае, расчет главного циркуляционного кольца будем проводить через стояк № 1.

Определим расчетное циркуляционное давление для главного циркуляционного кольца по формуле 5.6:

Б – коэффициент, для двухтрубных систем, равный 0.4;

∆Р СО = – насосное давление, передаваемое элеватором в систему отопления, равно8436Па;

∆Р е – естественное давление от остывания воды в отопительных приборах,

Па, определяемое по формуле 5.7 (для двухтрубных систем):

∆Р е = 6,3h(t Г –t 0); (5.7)

h– высота расположения центра прибора первого этажа относительно оси элеватора, м;

t Г = 95ºС – температура воды в подающей магистрали отопления;

t 0 = 70ºС – температура воды в обратной магистрали;

h= 1,80 м (см. аксонометрическую схему и схему элеваторного узла);

Р Ц =8436 + 0,4 ∙ 6,3 ∙ 1,8 ∙ (95 – 70) = 8549,4 Па

Расчет двухтрубного стояка гцк

Определяют длину труб стояка от подающей до обратной магистрали, включая подводки к приборам. Находят количество воды G (по формуле 5.2). Задают диаметры труб таким образом, чтобы скорость движения воды не превышала 1 м/с, и по номограмме для G определяют удельные потери давления P y , Па/м, на 1 погонный метр трубы, учитывающие потери на трение и в местных

сопротивлениях. Тогда потери давления на участке вычисляются по формуле 5.8:

Р СТ = P У ∙ l, (5.8)

где l – длина участка стояка или магистрали, м.

Полные потери давления в стояке должны быть в пределах (0,1-0,15)Р Ц.

Расчет магистралей.

Потери давления в магистралях Р МАГ составляют 0,9(Р Ц –Р СТ). В таблицу 5.1 заносят номера участков, их тепловые нагрузки и длины. Определяют количество воды на участках G, кг/ч. Ориентировочные удельные потери давления в магистралях Р У.ОР рассчитываются по формуле 5.9:

где Ʃl МАГ – суммарная длина всех участков магистралей ГЦК, м.

Диаметры труб подбирают таким образом, чтобы скорость движения воды не превышала 1 м/с и удельные потери давления Р У, определяемые по номограмме, были бы наиболее близки к Р У.ОР. По принятому диаметру труб и фактическому расходу воды по той же номограмме определяют фактические удельные потери давления Р у и скорость движения воды V. Значения Р у,V записываются в таблицу 5.1, затем вычисляют полные потери давления на участках по формуле 5.8 по всему ГЦК.

Расчёт ГЦК считается законченным, если запас давления, определяемый по

формуле 5.10, равен 5-10%:

Р ЗАП =(Р Ц – Р ЦК) / Р Ц ∙100% (5.10)

Р ЦК = Р МАГ + Р СТ – суммарные потери давления на всех участках магистралей и стояке ГЦК, Па. Если Р ЦК больше Р Ц, значит, диаметры труб занижены. На участках следует увеличить диаметры труб и сделать пересчёт потерь давления. Если значения Р ЦК окажется значительно меньше Р Ц, то следует уменьшить диаметры труб отдельных участков, потери давления на которых малы.

Расчеты сведены в таблицу 5.1.

Предварительный расчет:

0,15  Р Ц = 8549,4  0,15 = 1282,5 Па

Р СТ = 3289,04 >> 1282,5 Па, поэтому принимаем диаметр труб стояка – 15 мм вместо 10.

Р СТ = 1364,5 ≈ 1282,5 Па, но если увеличить диаметр труб ещё, то потери давления на стояке составят намного меньше 10% от РЦ (около 2%).

P МАГ = 0,9 (8549,4 –1364,5) = 6467 Па, L МАГ =54,7 м, Р У.ОР. = 118 Па/м.

Р ЦК = 6986,9 + 1364,5 = 8351,4 Па

Р ЗАП = (8549,4 – 8351,4) / 8549,4  100% = 2,3% < 5%

Окончательный расчет:

Принимаем диаметр участка №15 32 мм вместо 25 мм, чтобы увеличить запас:

Р ЗАП = (8549,4 – 7982,3) / 8549,4  100% = 6,6%.

5.4 Расчет поверхности и подбор отопительных приборов:

Для расчета по заданию принимаем тип отопительных приборов – радиатор чугунный секционный М-140-АО.

Техническая характеристика (для одной секции):

    номинальный тепловой поток одной секции q H = 595 Вт/секц.

Требуемое число секций отопительного прибора рассчитывается по формуле 5.11:

q оп – расчетный тепловой поток одной секции, Вт/секц, вычисляемый по формуле 5.12:

q H = 595 Вт/секц – номинальный тепловой поток одной секции, Вт/секц;

n, p – экспериментальные показатели, учитывающие влияние типа отопительного прибора, направление движения и количество проходящей воды;

 1 – коэффициент, учитывающий направление движения воды в приборе;

Δt – разность средней температуры воды в радиаторе и температуры воздуха в помещении, o C, можно найти по формуле 5.13:

Δt = 0,5  (t ВХ +t ВЫХ) – t В (5.13)

t ВХ ≈ t Г = 95 o C, t ВЫХ ≈ t 0 = 95 o C

Значение коэффициента приборов β1 и показателей степени n и р берутся из таблицы 5.2.

Таблица 5.2

Схема подводки теплоносителя к прибору

Значения коэффициентов

Сверху - вниз

Снизу - вверх

Снизу - вниз

Отметим, что при двухтрубной системе у всех приборов схема присоединения сверху-вниз.

Расчет приборов сведён в таблицу 5.3.

Полученное число секций N P округляют до целого Nуст следующим образом:

    если десятичная часть больше 0,28 - в сторону увеличения,

    если меньше или равна 0,28 - в сторону уменьшения.

Таблица 5.3

Поделиться: