Хромато-масс-спектрометрия. Курсовая работа: Масс-спектрометрический метод анализа

Что происходит с образцами крови, которую вы сдаете на клинический анализ? Сколько весит ваш гемоглобин? Каким образом ученые вообще взвешивают молекулы - мельчайшие частицы вещества, которые невозможно увидеть или потрогать? Обо всем этом в рамках рубрики «Просто о сложном» T&P рассказала студентка 5-го курса кафедры химической физики ФМХФ, сотрудница лаборатории ионной и молекулярной физики МФТИ Екатерина Жданова.

Очень часто методы исследований интересуют лишь специалистов в конкретных областях и остаются в тени более фундаментальных проблем, например происхождения жизни или принципов работы человеческого сознания. Тем не менее для поиска ответа на «главный вопрос жизни, Вселенной и всего остального» сначала необходимо научиться отвечать на вопросы более простые. Например, как взвесить молекулу? 

Обычные весы тут вряд ли помогут: масса молекулы метана - около 10^(-23) грамм. Молекула гемоглобина, крупного и сложного белка, весит в несколько раз больше - 10^(-20) грамм. Ясно, что необходим какой-то иной подход к проблеме, ведь привычные нам измерительные приборы к ней не применимы. Надо также понимать, что, взвешивая в магазине яблоки или становясь на весы после тренировок, мы на самом деле измеряем силу, действующую на прибор - весы. Затем уже происходит пересчет в привычные нам единицы - граммы и килограммы.


Но как же взвесить молекулу? Здесь природа оставила нам лазейку. Оказывается, заряженные частицы «чувствуют» присутствие электрического и магнитного поля и изменяют траекторию и характер своего движения. На заряженные частицы также действуют силы, величину которых можно пересчитать в отношении массы к заряду.
Этот метод сегодня довольно популярен и называется масс-спектрометрия. Первооткрывателем масс-спектрометрии считается сэр Дж. Дж. Томсон, нобелевский лауреат по физике. Он обратил внимание на то, что заряженные частицы движутся в магнитном поле по параболическим траекториям, пропорциональным отношению их массы к заряду.

Схема работы масс-спектрометра состоит из нескольких этапов. Прежде всего анализируемое вещество должно пройти ионизацию. Затем оно попадает в систему ионного транспорта, которая должна доставить заряженные частицы в масс-анализатор. В масс-анализаторе как раз происходит разделение ионов в зависимости от отношения массы к заряду. В завершение ионы попадают на детектор, данные с которого анализируются с помощью специального программного обеспечения. Полученная таким образом картинка представляет собой спектр, то есть распределение частиц. Одна из осей этого графика - отношения массы к заряду, вторая - интенсивность. Каждый из пиков на таком графике будет характерным для ионов конкретного вещества, поэтому попадание в прибор посторонних веществ, например воздуха, может привести к искажениям результатов. Чтобы избежать этого, применяется вакуумная система.

Сравнительно простая физическая концепция данного метода требует ряда нетривиальных инженерных решений. Как ионизировать молекулы? Каким способом создавать электромагнитное поле? 
Атомы и молекулы электрически нейтральны, поэтому для проведения масс-спектрометрических измерений необходимо их ионизировать, то есть оторвать электроны с внешних атомных орбиталей или добавить протон. Важную роль играет тип образца, с которым предстоит работать. Для исследования неорганических веществ - металлов, сплавов, горных пород - необходимо использовать одни методы, для органических веществ подходят другие. Очень многие органические вещества (такие как ДНК или полимеры) сложно испарить, то есть перевести в газ, без разложения, а это значит, что исследования живой ткани или биологических образцов требуют применения специальных методов. Кроме того, при ионизации молекулы могут распадаться на отдельные фрагменты. Так мы снова встаем перед вопросом: что именно мы собираемся измерить? Массу всей молекулы или массу фрагментов? И то и другое важно. Более того, измерив массу целой молекулы, исследователи часто специально дробят ее на куски. Так, определив массу структурных элементов белка, мы вместе с тем определяем и их количество, что позволяет нам делать выводы о его химическом составе и структуре.

Все это говорит о разнообразии существующих масс-спектрометров, каждый из которых применяется для решения задач в конкретной области. Этот метод практически незаменим в тех случаях, когда ученым необходимо определить химический состав вещества. Фармацевты применяют масс-спектрометрические эксперименты при разработке лекарств, исследованиях фармакокинетики (то есть биохимических процессов, происходящих в организме при принятии лекарства) и метаболизма. Ученые-биологи используют масс-спектрометрию для анализа белков, пептидов и нуклеиновых кислот. Кроме того, если мы хотим проверить качество воды или продуктов питания, то нам снова не обойтись без этого метода.

Отдельная инновационная область применения масс-спектрометрии - медицинская диагностика. К развитию множества заболеваний приводят структурные изменения белков нашего организма: обычно они классифицируются по образованию характерного кусочка, пептида-маркера. Если вовремя определить такую мутацию, то появляется возможность лечить болезнь на ранней стадии. Кроме того, благодаря современным масс-спектрометрам становится возможным проводить исследования такого рода в режиме реального времени - например, в ходе нейрохирургической операции. Это позволяет точно определять границы между здоровой тканью и опухолью, что критически важно для хирургов.

Кажущаяся на первый взгляд сухой и узкопрофильной, масс-спектрометрия при внимательном ознакомлении оказывается удивительно богатой областью, объединяющей широкий класс приложений с необычными инженерными решениями. Наука показывает, что ответы на менее фундаментальные вопросы порой не менее интересны.

Применение масс-спектрометрии

  • · Ядерная энергетика;
  • · Археология;
  • · Нефтехимия;
  • · Геохимия (изотопная геохронология);
  • · Агрохимия;
  • · Химическая промышленность;
  • · Анализ полупроводниковых материалов, особо чистых металлов, тонких пленок и порошков (например, оксидов U и РЗЭ);
  • · Фармацевтика - для контроля качества производимых лекарств и выявления фальсификатов;
  • · Медицинская диагностика;
  • · Биохимия - идентификация белков, исследование метаболизма лекарственных средств.

Хромато-масс-спектрометрия

Хромато-масс-спектрометрия - метод анализа смесей главным образом органических веществ и определения следовых количеств веществв объеме жидкости. Метод основан на комбинации двух самостоятельных методов - хроматографии и масс-спектрометрии. С помощью первого осуществляют разделение смеси на компоненты, с помощью второго - идентификацию и определение строения вещества, количественный анализ. Известны 2 варианта хромато-масс-спектрометрии, представляющие собой комбинацию масс-спектрометрии либо с газо-жидкостной хроматографией (ГЖХ), либо с высокоэффективной жидкостной хроматографией.

Рис. 10.

Первые исследования аналитических возможностей хромато-масс-спектрометрии были проведены в 1950-х гг., первые промышленные приборы, объединяющие газо-жидкостной хроматограф и

масс-спектрометр, появились в 60-х гг. Принципиальная совместимость этих двух приборов обусловлена тем, что в обоих случаях анализируемое вещество находится в газовой фазе, рабочие температурные интервалы одинаковы, пределы обнаружения (чувствительность) близки. Различие состоит в том, что в ионном источнике масс-спектрометра поддерживается высокий вакуум (10 -5 - 10 -6 Па), тогда как давление в хроматографической колонке 10 5 Па. Для понижения давления используют сепаратор, который одним концом соединен с выходом хроматографической колонки, а другим - с ионным источником масс-спектрометра. Сепаратор удаляет из газового потока, выходящего из колонки, основную часть газа-носителя, а органическое вещество пропускает в масс-спектрометр. При этом давление на выходе колонки понижается до рабочего давления в масс-спектрометре.

Принцип действия сепараторов основан либо на различии подвижности молекул газа-носителя и анализируемого вещества, либо на их различной проницаемости через полупроницаемую мембрану. В промышленности чаще всего применяют инжекторные сепараторы, работающие по первому принципу. Одностадийные сепараторы этого типа содержат две форсунки с отверстиями небольшого диаметра, которые установлены точно напротив друг друга. В объеме между форсунками создается давление 1,33 Па. Газовый поток из хроматографической колонки через первую форсунку со сверхзвуковой скоростью попадает в область вакуума, где молекулы распространяются со скоростями, обратно пропорциональными их массе. В результате более легкие и быстрые молекулы газа-носителя откачиваются насосом, а более медленные молекулы органического веществава попадают в отверстие второй форсунки, а затем в ионный источник масс-спектрометра. Некоторые приборы снабжены двухстадийным сепаратором, снабженным еще одним подобным блоком форсунок. В объеме между ними создается высокий вакуум. Чем легче молекулы газа-носителя, тем эффективнее они удаляются из газового потока и тем выше обогащение органическим веществом.

Наиболее удобный для хромато-масс-спектрометрии газ-носитель - гелий. Эффективность работы сепаратора, т.е. отношение количества органического вещества в газовом потоке, выходящем из колонки, к его количеству, поступающему в масс-спектрометр, в значительной степени зависит от расхода газа-носителя, попадающего в сепаратор. При оптимальном расходе 20-30 мл/мин удаляется до 93% газа-носителя, а в масс-спектрометр поступает более 60% анализируемого вещества. Такой расход газа-носителя типичен для насадочных колонок. В случае использования капиллярной хроматографической колонки расход газа-носителя не превышает 2-3 мл/мин, поэтому на ее выходе в газовый поток добавляют дополнительное количество газа-носителя, чтобы скорость потока, поступающего в сепаратор, достигла 20-30 мл/мин. Тем самым обеспечивается наилучшая эффективность сепаратора. Гибкие кварцевые капиллярные колонки могут вводиться непосредственно в ионный источник. В этом случае ионный источник должен быть обеспечен мощной откачивающей системой, поддерживающей высокий вакуум.

В масс-спектрометрах, соединенных с газовыми хроматографами, применяется ионизация электронным ударом, химическая или полевая. Хроматографические колонки должны содержать труднолетучие и термостабильные стационарные жидкие фазы, чтобы масс-спектр их паров не налагался на спектр анализируемого вещества.

Анализируемое вещество (обычно в растворе) вводится в испаритель хроматографа, где мгновенно испаряется, а пары в смеси с газом-носителем под давлением поступают в колонку. Здесь происходит разделение смеси, и каждый компонент в токе газа-носителя по мере элюирования из колонки поступает в сепаратор. В сепараторе газ-носитель в основном удаляется и обогащенный органическим веществом газовый поток поступает в ионный источник масс-спектрометра, где молекулы ионизируются. Число образующихся при этом ионов пропорционально количеству поступающего вещества. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, записывают хроматограммы. Таким образом, масс-спектрометр можно рассматривать как универсальный детектор к хроматографу. Одновременно с записью хроматограммы в любой ее точке, обычно на вершине хроматографического пика, может быть зарегистрирован масс-спектр, позволяющий установить строение вещества.

Важное условие работы прибора - быстрая запись масс-спектра, который должен регистрироваться за время, гораздо меньшее, чем время выхода хроматографического пика. Медленная запись масс-спектра может исказить соотношение интенсивностей пиков в нем. Скорость регистрации масс-спектра (скорость сканирования) определяется масс-анализатором. Наименьшее время сканирования полного масс-спектра (несколько миллисекунд) обеспечивает квадрупольный анализатор. В современных масс-спектрометрах, снабженных ЭВМ, построение хроматограмм и обработка масс-спектров производится автоматически. Через равные промежутки времени по мере элюирования компонентов смеси регистрируются масс-спектры, количественные характеристики которых накапливаются в памяти ЭВМ. Для каждого сканирования производится сложение интенсивностей всех регистрируемых ионов. Так как эта суммарная величина (полный ионный ток) пропорциональна концентрации вещества в ионном источнике, то ее используют для построения хроматограммы (эта величина откладывается по оси ординат, по оси абсцисс - время удерживания и номер сканирования). Задавая номер сканирования, можно вызвать из памяти масс-спектр в любой точке хроматограммы.

Как описано выше, могут быть проанализированы смеси веществ, достаточно хорошо разделяемые на подходящих колонках хромато-масс-спектрометрии. Иногда удается исследовать и неразрешенные хроматографические пики. Исследуемые вещества должны быть термически стабильны, хроматографически подвижны в интервале рабочей температуры колонки, легко переводиться в паровую фазу при температуре испарителя. Если вещества не удовлетворяют этим требованиям, их можно химически модифицировать, например силилированием, алкилированием или ацилированием гидрокси-, карбокси-, меркапто-, аминогрупп.

Чувствительность хромато-масс-спектрометрии (обычно 10 -6 -10 -9 г) определяется чувствительностью детектора масс-спектрометра. Более чувствительна (10 -12 -10 -15 г) разновидность хромато-масс-спектрометрии - масс-фрагментография, называемая также селективным ионным или многоионным детектированием. Суть ее состоит в том, что запись хроматограмм осуществляется не по полному ионному току, а по наиболее характерным для данного вещества ионам. Этот вид хромато-масс-спектрометрии используют для поиска, идентификации и количественного анализа вещества с известным масс-спектром в составе сложной смеси, например при количественном определении следов веществ в больших объемах биологических жидкостей (медицина, фармакология, токсикология, допинг-контроль, биохимия). Осуществляют масс-фрагментографию на хромато-масс-спектрометрах с использованием специального устройства - многоионного детектора либо с помощью ЭВМ, которая может строить хроматограммы по одному или нескольким ионам. Такая хроматограмма, в отличие от обычной, содержит пики лишь тех компонентов, в масс-спектрах которых есть такие ионы. Анализ проводят с применением внутреннего стандарта, в качестве которого часто используют аналог искомого вещества, меченный стабильными изотопами (2 Н, 13 С, 15 N, 18 O).

Другой вариант хромато-масс-спектрометрии заключается в сочетании высокоэффективной жидкостной хроматографии и масс-спектрометрии. Метод предназначен для анализа смесей труднолетучих, полярных веществ, не поддающихся анализу методом ГЖ хромато-масс-спектрометрии. Для сохранения вакуума в ионном источнике масс-спектрометра необходимо удалять растворитель, поступающий из хроматографа со скоростью 0,5-5 мл/мин. Для этого часть жидкого потока пропускают через отверстие в несколько мкм, в результате чего образуются капли, которые далее попадают в обогреваемую зону, где большая часть растворителя испаряется, а оставшаяся вместе с веществом попадает в ионный источник и ионизируется химически.

В ряде промышленных приборов реализован принцип ленточного транспортера. Элюат из колонки попадает на движущуюся ленту, которая проходит через обогреваемую ИК излучением камеру, где испаряется растворитель. Затем лента с веществом проходит через область, обогреваемую другим нагревателем, где испаряется анализируемое вещество, после чего оно поступает в ионный источник и ионизируется. Более эффективный способ сочетания высокоэффективного газо-жидкостного хроматографа и масс-спектрометра основан на электро- и термораспылении. В этом случае элюат пропускают через капилляр, нагретый до 150 °С, и распыляют в вакуумную камеру. Ионы буфера, присутствующие в растворе, участвуют в ионообразовании. Образовавшиеся капли несут положительный, или отрицательный заряд. Вдоль капли из-за малого ее диаметра создается высокий градиент электрического поля, причем по мере распада капель этот градиент возрастает. При этом происходит десорбция из капель протонированных ионов или кластеров (молекула вещества + катион буфера).

Метод хромато-масс-спектрометрии используют при структурно-аналитических исследованиях в органической химии, нефтехимии, биохимии, медицине, фармакологии, для охраны окружающей среды и др.

Масс-спектрометрия (масс-спектроскопия, масс-спектрография, масс-спектральный анализ, масс-спектрометрический анализ) - метод исследования вещества путём определения отношения массы к заряду (качества) и количества заряженных частиц, образующихся при том или ином процессе воздействия на вещество (см.: ионизация). История масс-спектрометрии ведётся с основополагающих опытов Джона Томсона в начале XX века. Окончание «-метрия» термин получил после повсеместного перехода от детектирования заряженных частиц при помощи фотопластинок к электрическим измерениям ионных токов.

Существенное отличие масс-спектрометрии от других аналитических физико-химических методов состоит в том, что оптические, рентгеновские и некоторые другие методы детектируют излучение или поглощение энергии молекулами или атомами, а масс-спектрометрия непосредственно детектирует сами частицы вещества.

Масс-спектрометрия в широком смысле - это наука получения и интерпретации масс-спектров, которые в свою очередь получаются при помощи масс-спектрометров.

Масс-спектрометр - это вакуумный прибор, использующий физические законы движения заряженных частиц в магнитных и электрических полях, и необходимый для получения масс-спектра.

Масс-спектр, как и любой спектр, в узком смысле - это зависимость интенсивности ионного тока (количества) от отношения массы к заряду (качества). Ввиду квантования массы и заряда типичный масс-спектр является дискретным. Обычно (в рутинных анализах) так оно и есть, но не всегда. Природа анализируемого вещества, особенности метода ионизации и вторичные процессы в масс-спектрометре могут оставлять свой след в масс-спектре (см. метастабильные ионы, градиент ускоряющего напряжения по местам образования ионов, неупругое рассеивание). Так ионы с одинаковыми отношениями массы к заряду могут оказаться в разных частях спектра и даже сделать часть его непрерывным. Поэтому масс-спектр в широком смысле - это нечто большее, несущее специфическую информацию, и делающее процесс его интерпретации более сложным и увлекательным.

Ионы бывают однозарядные и многозарядные, причём как органические, так и неорганические. Большинство небольших молекул при ионизации приобретает только один положительный или отрицательный заряд. Атомы способны приобретать более одного положительного заряда и только один отрицательный. Белки, нуклеиновые кислоты и другие полимеры способны приобретать множественные положительные и отрицательные заряды.

Атомы химических элементов имеют специфическую массу. Таким образом, точное определение массы анализируемой молекулы, позволяет определить её элементный состав (см.: элементный анализ). Масс-спектрометрия также позволяет получить важную информацию об изотопном составе анализируемых молекул (см.: изотопный анализ).

В органических веществах молекулы представляют собой определённые структуры, образованные атомами. Природа и человек создали поистине неисчислимое многообразие органических соединений. Современные масс-спектрометры способны фрагментировать детектируемые ионы и определять массу полученных фрагментов. Таким образом, можно получать данные о структуре вещества.

Первое, что надо сделать для того, чтобы получить масс-спектр, - превратить нейтральные молекулы и атомы, составляющие любое органическое или неорганическое вещество, в заряженные частицы - ионы. Этот процесс называется ионизацией и по-разному осуществляется для органических и неорганических веществ. Вторым необходимым условием является перевод ионов в газовую фазу в вакуумной части масс спектрометра. Глубокий вакуум обеспечивает беспрепятственное движение ионов внутри масс-спектрометра, а при его отсутствии ионы рассеются и рекомбинируют (превратятся обратно в незаряженные частицы).

В неорганической химии для анализа элементного состава применяются жёсткие методы ионизации, так как энергии связи атомов в твёрдом теле гораздо больше и значительно более жёсткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы.

Полученные при ионизации ионы с помощью электрического поля переносятся в масс-анализатор. Там начинается второй этап масс- спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z). Существуют следующие типы масс-анализаторов:

1)непрерывные масс-анализаторы

2)импульсные масс-анализаторы

Разница между непрерывными и импульсными масс-анализаторами заключается в том, что в первые ионы поступают непрерывным потоком, а во вторые - порциями, через определённые интервалы времени.

Масс-спектрометр может иметь два масс-анализатора. Такой масс-спектрометр называют тандемным. Тандемные масс спектрометры применяются, как правило, вместе с «мягкими» методами ионизации, при которых не происходит фрагментации ионов анализируемых молекул (молекулярных ионов). Таким образом первый масс-анализатор анализирует молекулярные ионы. Покидая первый масс-анализатор, молекулярные ионы фрагментируются под действием соударений с молекулами инертного газа или излучения лазера, после чего их фрагменты анализируются во втором масс-анализаторе. Наиболее распространёнными конфигурациями тандемных масс спектрометров являются квадруполь-квадрупольная и квадруполь-времяпролётная.

Детекторы

Итак, последним элементом описываемого нами упрощённого масс-спектрометра, является детектор заряженных частиц. Первые масс-спектрометры использовали в качестве детектора фотопластинку. Сейчас используются динодные вторично-электронные умножители, в которых ион, попадая на первый динод, выбивает из него пучок электронов, которые в свою очередь, попадая на следующий динод, выбивают из него ещё большее количество электронов и т. д. Другой вариант - фотоумножители, регистрирующие свечение, возникающее при бомбардировке ионами люминофора. Кроме того, используются микроканальные умножители, системы типа диодных матриц и коллекторы, собирающие все ионы, попавшие в данную точку пространства (коллекторы Фарадея).

Хромато-масс-спектрометрия

Масс-спектрометры используются для анализа органических и неорганических соединений. Органические вещества в большинстве случаев представляют собой многокомпонентные смеси индивидуальных компонентов. Например, показано, что запах жареной курицы составляют 400 компонентов (то есть, 400 индивидуальных органических соединений). Задача аналитики состоит в том, чтобы определить сколько компонентов составляют органическое вещество, узнать какие это компоненты (идентифицировать их) и узнать сколько каждого соединения содержится в смеси. Для этого идеальным является сочетание хроматографии с масс-спектрометрией. Газовая хроматография как нельзя лучше подходит для сочетания с ионным источником масс-спектрометра с ионизацией электронным ударом или химической ионизацией, поскольку в колонке хроматографа соединения уже находятся в газовой фазе. Приборы, в которых масс-спектрометрический детектор скомбинирован с газовым хроматографом, называются хромато-масс-спектрометрами («Хромасс»).

Многие органические соединения невозможно разделить на компоненты с помощью газовой хроматографии, но можно с помощью жидкостной хроматографии. Для сочетания жидкостной хроматографии с масс-спектрометрией сегодня используют источники ионизации в электроспрее (ESI) и химической ионизации при атмосферном давлении (APCI), а комбинацию жидкостных хроматографов с масс-спектрометрами называют ЖХ/МС (англ. LC/MS). Самые мощные системы для органического анализа, востребованные современной протеомикой, строятся на основе сверхпроводящего магнита и работают по принципу ионно-циклотронного резонанса. Они также носят название FT/MS, поскольку в них используется Фурье преобразование сигнала.

Масс-спектрометр

Масс-спектрометр - прибор для разделения ионизированных частиц вещества (молекул, атомов) по их массам, основанный на воздействии магнитных и электрических полей на пучки ионов, летящих в вакууме. Регистрация ионов в данном устройстве осуществляется электрическими методами.

Принцип работы.

Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря, в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра.

Этап 1: Ионизация

Образование положительно заряженного иона, путем выбивания одного или нескольких электронов из атома (масс-спектрометры всегда работают с положительными ионами).

Масс-спектрометр
Mass-spectrometer

Масс-спектрометр – прибор для определения масс атомов (молекул) по характеру движения их ионов в электрическом и магнитном полях.
Нейтральный атом не подвержен действию электрического и магнитного поля. Однако, если отнять у него или добавить ему один и более электронов, то он превратится в ион, характер движения которого в этих полях будет определяться его массой и зарядом. Строго говоря в масс-спектрометрах определяется не масса, а отношение массы к заряду. Если заряд известен, то однозначно определяется масса иона, а значит масса нейтрального атома и его ядра. Конструктивно масс-спектрометры могут сильно отличаться друг от друга. В них могут использоваться как статичные поля, так и изменяющиеся во времени поля, магнитные и/или электрические.

Рассмотрим один из наиболее простых вариантов.
Масс-спектрометр состоит из следующих основных частей:
а ) ионного источника, где нейтральные атомы превращаются в ионы (например, под действием нагревания или СВЧ-поля) и ускоряются электрическим полем, б ) области постоянных электрических и магнитных полей, и в ) приёмника ионов, определяющего координаты точек, куда попадают ионы, пересекшие эти поля.
Из ионного источника 1 ускоренные ионы через щель 2 попадают в область 3 постоянного и однородного электрического E и магнитного B 1 полей. Направление электрического поля задаётся положением пластин конденсатора и показано стрелками. Магнитное поле направлено перпендикулярно плоскости рисунка. В области 3 электрическое E и магнитное B 1 поля отклоняют ионы в противоположные стороны и величины напряжённости электрического поля Е и индукции магнитного поля B 1 подобраны так, чтобы силы их действия на ионы (соответственно qЕ и qvB 1 , где q – заряд, а v – скорость иона) компенсировали друг друга, т.е. было qЕ = qvB 1 . При скорости иона v = Е/B 1 он движется не отклоняясь в области 3 и проходит через вторую щель 4, попадая в область 5 однородного и постоянного магнитного поля c индукцией B 2 . В этом поле ион движется по окружности 6, радиус R которой определяется из соотношения
Мv 2 /R = qvB 2 , где М – масса иона. Так как v = Е/B 1 , масса иона определяется из соотношения

M = qB 2 R/v = qB 1 B 2 R/E.

Таким образом, при известном заряде иона q его масса M определяется радиусом R круговой орбиты в области 5. Для расчётов удобно использовать соотношение в системе единиц, приведённой в квадратных скобках:

M[Тл] = 10 6 ZB 1 [Тл]B 2 [Тл]R[м]/E[В/м].

Если в качестве детектора ионов 7 использовать фотопластинку, то этот радиус с высокой точностью покажет чёрная точка в том месте проявленной фотопластинки, куда попадал пучок ионов. В современных масс-спектрометрах в качестве детекторов обычно используют электронные умножители или микроканальные пластинки. Масс-спектрометр позволяет определять массы с очень высокой относительной точностью ΔМ/М = 10 -8 - 10 -7 .
Анализ масс-спектрометром смеси атомов различной массы позволяет также определить их относительное содержание в этой смеси. В частности, может быть установлено содержание различных изотопов какого-либо химического элемента.

Масс-спектрометр – устройство для установления масс атомов (молекул) согласно характеру перемещения их ионов в гальваническом и магнитном фонах.

Навигация:

Нейтральная частица не подвергается воздействию гальванического и магнитного поля. Тем не менее, в случае если забрать у неё либо прибавить ей один и больше электронов, в таком случае она перевоплотится в ион, вид перемещения которого в данных полях достаточно предопределяется его весом и зарядом. Определённо говоря, в масс-спектрометрах обусловливается не масса, а расположение массы к заряду. В случае если запас известный, в таком случае несомненно обусловливается массовая значимость иона, а следовательно, масса промежуточного атома и его ядра. Конструктивно, масс-спектрометры могут очень различаться друг от друга. В них могут применяться равно как статичные поля, так и меняющиеся во времени поля, магнитные либо гальванические.

Масс-спектрометр складывается с последующих ключевых элементов:

  • Гетерополярного источника, где промежуточные атомы преобразуются в ионы (к примеру, перед воздействием нагревания либо СВЧ-поля) и убыстряются гальваническим полем;
  • Сферы неизменных электро- и магнитных полей;
  • Приёмника ионов, характеризующего местоположение областей, куда определяются ионы, пересекшие данные поля.

Масс-спектрометр

Хромато-масс-спектрометр

Концепция ХМС с комбинированным квадруполь-времяпролётным масс-спектрометром высокого разрешения с ионизацией электроспреем, дает возможность замечать и определять как ведомые компоновки и их метаболиты, так и незнакомые компоновки в размашистом спектре масс с 20 вплоть до 40 000. Несомненно (лекарственные вещества, наркотикосодержащие вещества, пестициды и др.), осуществлять совместное исследование главных и следовых частей, предопределять подлинное изотопическое отношение с целью четкого установления молекулярных формул. Меняющийся интервал при численной оценке является свыше 4 порядков. Применяется с целью численной оценки синтезов. Устройство располагает уникальными характеристиками: разрешающей возможностью более 35 000 FWHM, правильностью установления молекулярной массы меньше 0.7 ррm, высочайшей чувствительностью при наибольшем разрешении. Большой темп распознавания информации – вплоть до 60 спектров в одну секунду.

Хромато-масс-спектрометр

Научные работники в течение длительного времени разыскивали альтернативу магниту в свойстве масс-анализатора. В 1953 Вольфгангом Паулем, в дальнейшем получивший Нобелевскую премию в области физики в 1989 г., было очерчено первое устройство с квадрупольным анализатором. Формирование квадрупольных масс-анализаторов стало революцией в масс-спектрометрии. Магнитные масс-анализаторы требуют применения высочайших напряжений (тыс. вольт), а квадрупольные - нет, и данное упрощает их систему, наименьшие объемы вакуумной доли упрощают концепцию формирования вакуума. Масс-спектрометры стали меньше в объемах, стали легче в эксплуатации и что самое главное, гораздо экономичнее, чтобы раскрыть вероятность пользоваться данным аналитическим способом многочисленным тысячам пользователей. К минусам квадруполей принадлежат невысокое разрешение и небольшой верх наибольшей детектируемой массы (м/z~4100). Тем не менее, нынешние масс-анализаторы дают возможность осуществлять детектирование ионов с соответствием м/z~350.

Принцип действия

Квадруполь предполагает собою 4 одновременно и симметрично размещенных монополя (электроды совершенного сечения). К электродам по двое в обратной полярности подаётся обусловленное сочетание непрерывного и индукционного напряжения.

Под воздействием незначительного убыстряющего напряжения (15-25 В), ионы входят синхронно осям стержней электродов. Перед воздействием осцилирующего поля, предопределяемым электродами, они начинают двигаться вдоль осей х и у. При этом амплитуда колебаний увеличивается без перемены направленности перемещения. Ионы, чьи амплитуды доходят высочайших значимостей, нейтрализуются при столкновении с электродами. Прочную амплитуду обретают только лишь эти ионы, чьи значения м/z станут отвечать установленному соответствию U/V. Последнее дает возможность им беспрепятственно передвигаться в квадруполе и находиться в окончательном результате детектируемыми. Подобным способом, масс-диапазон фиксируется маршрутом обоюдной перемены значимостей величин U и V.

Квадрупольный масс-спектрометр

Магнитный масс-спектрометр

В магнитных масс-спектрометрах с целью распределения ионов в масс-анализаторах, применяют гомогенное магнитное поле. В данном случае движения форсирования ионов в гальванической область и распределения их в магнитной, могут быть изображены численно.

Магнитный масс-термоанализатор - приспособление с целью пространственного и временного распределения ионов с разными значимостями взаимоотношения массы к заряду, применяющиеся с целью распределения магнитного поля.

Исторически, первоначальным масс-анализатором был магнит. В соответствии с физическим законом, линия заряженных элементов в магнитном поле искажается, а радиус кривизны находится в зависимости от массы элементов.

Существуют разные геометрии магнитных масс-анализаторов, в каковых измеряется или радиус кривизны, или магнитное поле. Магнитные масс-спектрометры обладают высочайшим разрешением и могут применяться с абсолютно всеми типами ионизации. Невзирая на существенные плюсы нынешних пред остальными (высочайшее разрешение, большая достоверность замеров и высокий рабочий интервал масс), они располагают 2-я главными недостатками - данное оборудование огромно, как согласно объемам, так и согласно размеру цены.

Магнитный масс-спектрометр

Это простой тип масс-анализатора. Во времяпролетном масс-анализаторе ионы выпадают с источника и оказываются во времяпролетной трубе, где не имеется гальванического поля (бесполевой период). Пронесшись определенный промежуток d, ионы фиксируются сенсором ионов с прямой либо практически прямой фиксирующей поверхностью. В 1951-1971 годах, в свойстве сенсора ионов применялся второстепенный электрический умножитель «жалюзного типа», позднее использовался составной обнаружитель, применяющий 2 либо изредка 3 последовательно находящихся микроканальных пластинок.

Времяпролетный масс-термоанализатор представляется пульсирующим масс-анализатором, то есть ионы зачисляются с источника ионов во времяпролетный элемент не постоянно, а дозами, при помощи определенных интервалов времени. Подобные масс-анализаторы совместимы с ионизацией лазерной десорбции, при содействии матрицы, таким образом, как в этом способе ионизации, ионы кроме того возникают не постоянно, а при любом импульсе лазера.

Времяпролетный масс-спектрометр

Масс-спектрометры Agilent

Еще издавна масс-спектрометр оценивают как прекрасный обнаружитель для газовой хроматографии. Приобретенные с поддержкой масс-спектрометрического сенсора спектры, предоставляют подобные сведения о высококачественном составе проверки, которую не могут предоставить другие газохроматографические сенсоры. Масс-спектрометрический обнаружитель имеет огромную чувствительность, помимо этого, он уничтожает пробу, предоставляет данные о массе и распознаёт быстрее гомологи, нежели изомеры.

Высоконадежные масс-спектрометры Agilent удовлетворяют наиболее большим условиям и предельно отвечают решаемым задачам. В настоящий период производители могут представить линейки высокоточных прогрессивных масс-спектрометров для ГX и BЭЖX.

Масс-спектрометр Agilent

Поделиться: