Основы регулирования системы отопления. Автономное отопление в квартире многоэтажного дома

Давление, которое должно быть в системе отопления многоквартирного дома, регламентируется СНиПами и установленными нормами. При расчете берут во внимание диаметр труб, типы трубопровода и отопительных приборов, расстояние до котельной, этажность.

Виды давления

Говоря о давлении в системе отопления, подразумевают 3 его вида:

  1. Статическое (манометрическое). При выполнении расчетов его принимают равным 1атм или 0,1 МПа на 10 м.
  2. Динамическое, возникающее при включении в работу циркуляционного насоса.
  3. Допустимое рабочее, представляющее собой сумму двух предыдущих.

В первом случае это сила давления теплоносителя в радиаторах, запорной арматуре, трубах. Чем выше этажность дома, тем большее значение приобретает этот показатель. Чтобы преодолеть подъем столба воды применяют мощные насосы.

Второй случай - это давление, возникающее в процессе движения жидкости в системе. А от их суммы - максимального рабочего давления, зависит работа системы в безопасном режиме. В многоэтажном доме его величина достигает 1 МПа.

Требования ГОСТ и СНиП

В современных многоэтажных домах монтаж системы отопления осуществляют, опираясь на требования ГОСТа и СНиП. В нормативной документации оговорен диапазон температур, которые центральное отопление должно обеспечить. Это от 20 до 22 градусов С при параметрах влажности от 45 до 30%.

Чтобы достичь этих показателей, необходим просчет всех нюансов в работе системы еще при разработке проекта. Задача теплотехника - обеспечить минимальную разность значений давления жидкости, циркулирующей в трубах, между нижними и последними этажами дома, сократив тем самым теплопотери.

На реальную величину давления влияют следующие факторы:

  • Состояние и мощность оборудования, подающего теплоноситель.
  • Диаметр труб, по которым теплоноситель циркулирует в квартире. Бывает, что желая повысить температурные показатели, хозяева сами меняют их диаметр в большую сторону, снижая общее значение давления.
  • Расположение конкретной квартиры. В идеале это не должно иметь значения, но в действительности существует зависимость от этажа, и от удаленности от стояка.
  • Степень износа трубопровода и нагревательных приборов. При наличии старых батарей и труб не следует ожидать, что показатели давления останутся в норме. Лучше предупредить возникновение нештатных ситуаций, заменив отслужившую свое теплотехнику.

Как меняется давление от температуры

Проверяют рабочее давление в высотном доме при помощи трубчатых деформационных манометров. Если при проектировании системы конструкторы заложили автоматическую регулировку давления и его контроль, то дополнительно устанавливают датчики разных типов. В соответствии с требованиями, прописанными в нормативных документах, контроль осуществляют на наиболее ответственных участках:

  • на подаче теплоносителя от источника и на выходе;
  • перед насосом, фильтрами, регуляторами давления, грязевиками и после этих элементов;
  • на выходе трубопровода из котельной или ТЭЦ, а также на вводе его в дом.

Обратите внимание: 10% разницы между нормативным рабочим давлением на 1 и 9 этаже - это нормально.

Давление в летний период

В период, когда отопление бездействует как в теплосети, так и в системах отопления поддерживается давление, величина которого превышает статическое. В противном случае в систему попадет воздух и трубы начнут коррозировать.

Минимальное значение этого параметра определяется высотой здания плюс запас от 3 до 5 м.

Как поднять давление

Проверки давления в отопительных магистралях многоэтажных домов нужны обязательно. Они позволяют анализировать функциональность системы. Падение уровня давления даже на незначительную величину, может стать причиной серьезных сбоев.

При наличии централизованного отопления систему чаще всего испытывают холодной водой. Падение давления за 0,5 часа на величину большую, чем 0,06 МПа указывает на наличие порыва. Если этого не наблюдается, то система готова к работе.

Непосредственно перед стартом отопительного сезона выполняют проверку водой горячей, подаваемой под максимальным давлением.

Изменения, происходящие в системе отопления многоэтажного дома, чаще всего не зависят от хозяина квартиры. Пытаться повлиять на давление - затея бессмысленная. Единственное, что можно сделать, устранить воздушные пробки, появившиеся из-за неплотных соединений или неправильно выполненной регулировки клапана спуска воздуха.

На наличие проблемы указывает характерный шум в системе. Для отопительных приборов и труб это явление очень опасно:

  • Расслаблением резьбы и разрушениями сварных соединений во время вибрации трубопровода.
  • Прекращением подачи теплоносителя в отдельные стояки или батареи в связи со сложностями с развоздушиванием системы, невозможностью регулировки, что может привести к ее размораживанию.
  • Понижением эффективности системы, если теплоноситель прекращает движение не полностью.

Чтобы предотвратить попадание воздуха в систему необходимо перед ее испытанием в рамках подготовки к отопительному сезону осмотреть все соединения, краны на предмет пропускания воды. Если услышите характерное шипение при пробном запуске системы, немедленно ищите утечку и устраняйте ее.

Можно нанести на стыки мыльный раствор и там, где герметичность нарушена, будут появляться пузырьки.

Иногда давление падает и после замены старых батарей на новые алюминиевые. На поверхности этого металла от контакта с водой появляется тонкая пленка. Побочным продуктом реакции является водород, за счет его сжимания давление снижается.

Вмешиваться в работу системы в этом случае не стоит - проблема носит временный характер и со временем уходит сама по себе. Это происходит исключительно в первое время после монтажа радиаторов.

Повысить напор на верхних этажах высотного здания можно путем установки циркуляционного насоса.

Минимальное давление

Из условия, когда перегретая вода в системе отопления не вскипает, принимается минимальное давление.

Определить его можно следующим образом:

К высоте дома (геодезической) добавляют запас приблизительно 5 м, чтобы избежать завоздушивания, плюс еще 3 м на сопротивление системы отопления внутри дома. Если на подаче давление недостаточное, то батареи на верхних этажах останутся непрогретыми.

Если взять 5-этажный дом, то на подаче минимальное давление должно иметь значение:

5х3+5+3=23 м = 2,3 ата = 0,23 Мпа

Перепад давления


Чтобы отопительная система нормально выполняла свои функции, перепад давлений, представляющий собой разность между его величинами на подаче и обратке, должен быть определенной и постоянной величины. В числовом выражении он должен быть в пределах от 0,1 до 0,2 МПа.

Отклонение параметра в меньшую сторону свидетельствует о сбое в циркуляции теплоносителя по трубам. Колебание в сторону увеличения показателя - о завоздушивании отопительной системы.

В любом случае нужно искать причину изменения, иначе отдельные элементы могут выйти со строя.

Если давление упало, то проверяют на наличие утечек: отключают насос и наблюдают изменения статического давления. Если оно продолжает снижаться, то ищут место повреждения путем последовательного выведения из схемы разных участков.

В случае, когда статический напор не меняется, то причина кроется в неисправности оборудования.

Стабильность перепада рабочего давления изначально зависит от проектировщиков, от выполненных ими расчетов по гидравлике, а затем правильного монтажа магистрали. Нормально функционирует отопления многоэтажки, при монтаже которого учтены следующие моменты:

  • Подающий трубопровод, за редким исключением, находится вверху, обратный внизу.
  • Разливы выполнены из труб сечение от 50 до 80 мм, а стояки и подвод к батареям - от 20 до 25 мм.
  • В отопительную систему в байпасную линию насоса или перемычку, соединяющую подачу и обратку врезаны регуляторы, гарантирующие, что даже при резких перепадах давления завоздушивание не появится.
  • В схеме теплоснабжения присутствует запорная арматура.

Идеальных условий эксплуатации отопительной системы не существует. Всегда есть потери, снижающие показатели давления, но все же они не должны выходить за пределы регламентированными Строительными нормами и правилами РФ СНиП 41-01-2003.

Регулирование нагрузки в системах теплоснабжения

Системы теплоснабжения представляют собой взаимосвязанный комплекс потребителей теплоты, отличающихся как характером, так и величиной теплопотребления. Режимы расходов теплоты многочисленными абонентами неодинаковы. Тепловая нагрузка отопительных установок изменяется в зависимости от температуры наружного воздуха, оставаясь практически стабильной в течение суток. Расход теплоты на горячее водоснабжение и для ряда технологических процессов не зависит от температуры наружного воздуха, но изменяется как по часам суток, так и по дням недели.

В этих условиях необходимо искусственное изменение параметров и расхода теплоносителя в соответствии с фактической потребностью абонентов. Регулирование повышает качество теплоснабжения, сокращает перерасход тепловой энергии и топлива.

В зависимости от места осуществления регулирования различают центральное, групповое, местное и индивидуальное регулирование.

Центральное регулирование выполняют на ТЭЦ или в котельной попреобладающей нагрузке, характерной для большинства абонентов. В городских тепловых сетях такой нагрузкой может быть отопление или совместная нагрузка отопления и горячего водоснабжения. На ряде технологических предприятий преобладающим является технологическое тепло-потребление.

Групповое регулирование производится в центральных тепловыхпунктах (ЦТП) для группы однородных потребителей. В ЦТП поддерживаются требуемые расход и температура теплоносителя, поступающего в распределительные или во внутриквартальные сети.

Местное регулирование предусматривается на абонентском вводе длядополнительной корректировки параметров теплоносителя с учетом местных факторов.

Индивидуальное регулирование осуществляется непосредственно у теплопотребляющих приборов, например, у отопительных приборов систем отопления, и дополняет другие виды регулирования.

Тепловая нагрузка многочисленных абонентов современных систем теплоснабжения неоднородна не только по характеру теплопотребления, но и по параметрам теплоносителя. Поэтому центральное регулирование отпуска теплоты дополняется групповым, местным и индивидуальным, т. е. осуществляется комбинированное регулирование. Комбинированное


регулирование, состоящее из нескольких ступеней, взаимно дополняющих друг друга, создает наиболее полное соответствие между отпуском тепло-ты и фактическим теплопотреблением.

По способу осуществления регулирование может быть авто-матическим и ручным.

Сущность методов регулирования вытекает из уравнения теплового баланса

где Q - количество теплоты, полученное прибором от теплоносителя и отданное нагреваемой среде, кВт/ч; G c . в - расход теплоносителя - сете

вой воды, кг/ч; с - теплоемкость теплоносителя, кДж/кг°С; 1 , 2 - тем-пература теплоносителя на входе и выходе из теплообменника, °С.

Регулирование тепловой нагрузки возможно несколькими методами: изменением температуры теплоносителя - качественный метод; измене-нием расхода теплоносителя - количественный метод; периодическим от-ключением систем - прерывистое регулирование; изменением поверхно-сти нагрева теплообменника. Сложность осуществления последнего мето-да ограничивает возможность его широкого применения.

Качественное регулирование осуществляется изменением тем-пературы при постоянном расходе теплоносителя. Качественный метод яв-ляется наиболее распространенным видом центрального регулирования водяных тепловых сетей.

Количественное регулирование отпуска теплоты производится изменением расхода теплоносителя при постоянной его температуре в подающем трубопроводе.

Качественно-количественное регулирование выполняется путем со-вместного изменения температуры и расхода теплоносителя.

Прерывистое регулирование достигается периодическим от-ключением систем, т. е. пропусками подачи теплоносителя, в связи с чем этот метод называется регулированием пропусками.

Центральные пропуски возможны лишь в тепловых сетях с однородным теплопотреблением, допускающим одновременные перерывы в пода-че теплоты. В современных системах теплоснабжения с разнородной тепловой нагрузкой регулирование пропусками используется для местного регулирования.


В паровых системах теплоснабжения качественное регулирование не-приемлемо ввиду того, что изменение температур в необходимом диапазоне требует большого изменения давления. Центральное регулирование паро-вых систем производится в основном количественным методом или путем пропусков. Однако периодическое отключение приводит к неравномерному прогреву отдельных приборов и к заполнению системы воздухом. Более эффективно местное или индивидуальное количественное регулирование.

Современные системы теплоснабжения характеризуются наличием разнородных потребителей, отличающихся как видом теплопотребления, так и параметрами теплоносителя. Наряду с отопительными установками значительное количество теплоты расходуется на горячее водоснабжение, возрастает вентиляционная нагрузка. При одновременной подаче теплоты по двухтрубным тепловым сетям для разнородных потребителей цен-тральное регулирование, выполняемое по преобладающей нагрузке, долж-но быть дополнено групповым и местным регулированием.

Температура сетевой воды в подающем трубопроводе закрытых систем не должна быть ниже 70 °С, так как при более низких температурах нагрев водопроводной воды в теплообменнике до 60-65 °С будет невозможен.

В результате такого ограничения график температур имеет вид лома-ной линии с точкой излома при минимально допустимой температуре воды (рис. 6.7). В открытых системах температура воды в подающей линии не

должна превышать 60 °С (τ 1 = t г 60 °С). Температура наружного воздуха, соответствующая точке «излома» или «срезки» графика, обозначается t н .

При температурах наружного воздуха выше t н центральное регулирование

сезонной нагрузки во избежание перегрева помещений дополняется местным регулированием.

В зависимости от соотношения нагрузок горячего водоснабжения и отопления центральное регулирование разнородной нагрузки производится по отопительной нагрузке или по совместной нагрузке отопления и горячего водоснабжения.

Центральное качественное регулирование по отопительной нагрузке принимается в системах теплоснабжения со среднечасовой нагрузкой горячего водоснабжения, не превышающей 15 %, от расчетного расхода теп-лоты на отопление.


Рис. 6.7. График температур при комби-нированном регулировании отопительной на-грузки: 1 , 2. о - температуры сетевой воды в

подающем и обратном трубопроводах теплосе-ти; 1 , 2. о и 1 , 2. о - температуры сетевой воды в подающем и обратном трубопроводах теплосети при t н ро и при t н соответственно

ро
t н t н

Точка излома температурного графика делит отопительный период на два диапазона (рис. 6.7): 1 - в интервале наружных температур 2 - в интервале температур . Граница между диапазонами находится графически в точке пересечения кривой с горизонтальной линией, соответствующей t = 70 °С.

График температур, приведенный на рис. 6.7, носит название отопительно-бытового.

Вопросы для самоконтроля

1. Поясните устройство водяных и паровых систем теплоснабжения, их плюсы и минусы.

2. Какие существуют схемы подключения абонентов к водяным сис-темам теплоснабжения? Начертите их и объясните принцип работы.

3. Какие существуют тепловые нагрузки?

4. Каким образом может осуществлятся регулирование нагрузок в системах теплоснабжения?


Методы регулирования.

Тепловая нагрузка абонентов непосто­янна и зависит от:

    ме­теорологических условий (температуры на­ружного воздуха, скорости ветра, инсоля­ции),

    режима расхода воды на горячее водо­снабжение,

    режима работы технологиче­ского оборудования и других факторов.

Системой регулирования отпуска теплоты называется изменение количества теплоты подаваемого потребителям в соответствии с графиком потребления.

Для обеспечения высокого качества теплоснаб­жения, а также экономичных режимов вы­работки теплоты на ТЭЦ или в котельных и транспортировки ее по тепловым сетям вы­бирается соответствующий метод регу­лирования.

В зависимости от пункта осуществления регулирования различают

    Центральное регулирование выполняется на ТЭЦ или в котельной;

    групповое - на групповых тепловых подстан­циях (ГТП);

    местное - на местных тепло­вых подстанциях (МТП), называемых часто абонентскими вводами;

    индивидуальное - непосредственно на теплопотребляющих приборах.

Тепловая нагрузка принципиально может регулироваться за счет изменения пяти параметров:

    коэффи­циента теплопередачи нагревательных при­боров k,

    площади включенной поверхности нагрева F,

    температуры греющего теплоно­сителя на входе в прибор  1 ,

    эквивалента расхода греющего теплоносителя W n ,

    вре­мени работы прибора п.

Для центрального регулирования из этих пяти параметров практически можно использовать только  1 и W n и время. При этом не­обходимо учитывать, что возможный диа­пазон изменения  1 , и W n в реальных усло­виях ограничен рядом обстоятельств.

    При разнородной тепловой нагрузке нижним пределом  1 является обычно тем­пература, требуемая для горячего водо­снабжения (обычно 70 °С).

    Верхний предел  1 определяется допустимым давлением в подающей линии тепловой сети из усло­вия невскипания воды (130°С).

    Нижний предел расхода определяется возможностью регулировки системы при снижении количества теплоносителя ниже минимально допустимого.

    Верхний предел W n определяется располагаемым напором на тепловом пункте и гидравлическим сопротивлением теплопотребляющих установок.

Что же ка­сается параметров k, F и п, то ими можно пользоваться для изменения расхода тепло­ты, как правило, только при местном регу­лировании.

Основной метод регулирования тепло­вой нагрузки нагревательных приборов при использовании пара заключается в измене­нии температуры конденсации посредством дросселирования или же в изменении вре­мени работы прибора, т.е. работа так на­зываемыми «пропусками». Оба метода ре­гулирования являются местными.

В водяных системах централизованного теплоснабжения (СЦТ) принципиально воз­можно использовать три метода централь­ного регулирования:

    качественный, заключающийся в ре­гулировании отпуска теплоты за счет изме­нения температуры теплоносителя на входе в прибор при сохранении постоянным коли­чества (расхода) теплоносителя, подавае­мого в регулируемую установку;

    количественны й, заключающийся в регулировании отпуска теплоты путем из­менения расхода теплоносителя при посто­янной температуре его на входе в регули­руемую установку;

    качественно-количественный , заклю­чающийся в регулировании отпуска тепло­ты посредством одновременного изменения расхода G n (W n) и температуры теплоно­сителя  1.

В современных системах теплоснабжения применяется в основном центральное качественное регулирование, которое дополняется на тепловом пункте групповым или местным количественным регулированием или регулирование пропусками.

Количественное регулирование возможно только при присоединении абонентских установок к тепловой сети по независимой схеме со смесительным центробежным насосом. При присоединении отопительных установок по зависимой схеме с элеватором снижение расхода сетевой воды вызывает пропорциональное изменение расхода в местной установке. Это может привести к вертикальной регулировке системы отопления.

Центральное регулирование ведется по типовой тепловой нагрузке характерной для большинства абонентов района.

Это мб как один вид нагрузки (отопление) так и 2 разных вида при определенном их количестве соотношении (отопление и гвс).

За счет чего создается перепад давлений в системах водоснабжения и отопления? Для чего он нужен? Как регулировать перепад? В силу каких обстоятельств в системе отопления падает давление? В статье мы попытаемся ответить на эти вопросы.

Функции

Для начала узнаем, для чего создается перепад. Его основная функция - обеспечение циркуляции теплоносителя. Вода постоянно будет двигаться из точки с громадным давлением в точку, где давление меньше. Чем больше перепад - чем больше скорость.

Полезно: ограничивающим причиной делается растущее с повышением скорости потока гидравлическое сопротивление.

Помимо этого, перепад искусственно создается между циркуляционными врезками тёплого водоснабжения в одну нитку (подачу либо обратку).

Циркуляция в этом случае делает две функции:

  1. Снабжает стабильно большую температуру полотенцесушителей , каковые во всех современных зданиях размыкают собой один из соединенных попарно стояков ГВС.
  2. Гарантирует стремительное поступление тёплой воды к смесителю независимо от времени дней и водоразбора по стояку. В ветхих зданиях без циркуляционных врезок воду по утрам приходится подолгу сливать до ее нагрева.

Наконец, перепад создается современными устройствами учета расхода воды и тепла.


Как и для чего? Для ответа на данный вопрос необходимо отослать читателя к закону Бернулли, в соответствии с которому статическое давление потока обратно пропорционально скорости его перемещения.

Это дает нам возможность сконструировать прибор, регистрирующий расход воды без применения ненадежных крыльчаток:

  • Пропускаем поток через переход сечения.
  • Регистрируем давления в узкой части счетчика и в главной трубе.

Зная давления и диаметры, при помощи электроники возможно рассчитывать в настоящем времени расход и скорость потока воды; при применении же термодатчиков на выходе и входе из контура отопления несложно вычислить количество оставшегося в системе отопления тепла. Заодно по отличию расхода на подающем и обратном трубопроводах рассчитывается потребление тёплой воды.

Создание перепада

Как создается перепад давлений?

Элеватор

Основной элемент системы отопления многоквартирного дома - элеваторный узел. Его сердцем есть сам элеватор - невзрачная чугунная трубка с тремя соплом и фланцами в.Прежде, чем растолковать принцип работы элеватора, стоит упомянуть одну из неприятностей центрального отопления.

Существует такое понятие, как температурный график - таблица зависимости температур автострад подачи и обратки от погодных условий. Приведем маленькую выдержку из него.

Температура наружного воздуха, С Подача, С Обратка, С
+5 65 42,55
0 66,39 40,99
-5 65,6 51,6
-10 76,62 48,57
-15 96,55 52,11
-20 106,31 55,52

Отклонения от графика в громадную и меньшую сторону одинаково нежелательны. В первом случае в квартирах будет холодно, во втором - быстро растут затраты энергоносителя на ТЭЦ либо котельной.


Наряду с этим, как легко подметить, разброс между обратным трубопроводом и подачей велик. При циркуляции, достаточно медленной для таковой дельты температур, температура отопительных устройств будет распределена неравномерно. Обитатели квартир, чьи батареи подключены к стоякам подачи, будут мучиться от жары, а обладатели радиаторов на обратке - мерзнуть.

Элеватор снабжает частичную рециркуляцию теплоносителя из обратного трубопровода. Впрыскивая через сопло стремительную струю тёплой воды, он в полном соответствии с законом Бернулли формирует стремительный поток с низким статическим давлением, который затягивает дополнительную массу воды через подсос.

Температура смеси заметно ниже, чем у подачи, и немного выше, чем на обратном трубопроводе. Скорость циркуляции оказывается высокой, а отличие температур между батареями - минимальной.


Подпорная шайба

Это несложное приспособление является диском из стали толщиной не меньше миллиметра с просверленным в нем отверстием. Оно ставится на фланец элеваторного узла между циркуляционными врезками. Шайбы ставятся и на подающем, и на обратном трубопроводе.

Принципиально важно: для обычной работы элеваторного узла диаметр отверстий подпорных шайб должен быть больше диаметра сопла. В большинстве случаев отличие образовывает 1-2 миллиметра.

Циркуляционный насос

В автономных системах отопления напор создается одним либо несколькими (по числу свободных контуров) циркуляционными насосами. Наиболее распространенные устройства - с мокрым ротором - являются конструкцией с неспециализированным валом для ротора и крыльчатки электромотора. Теплоноситель делает функции смазки и охлаждения подшипников.


Значения

Каков перепад давлений между различными участками отопительной системы?

  • Между подающей и обратной нитками теплотрассы он образовывает приблизительно 20 - 30 метров, либо 2 - 3 кгс/см2.

Справка: избыточное давление в одну атмосферу поднимает водяной столб на высоту 10 метров.

  • Перепад между смесью по окончании элеватора и обратным трубопроводом - всего 2 метра, либо 0,2 кгс/см2.
  • Перепад на подпорной шайбе между циркуляционными врезками элеваторного узла редко превышает 1 метр.
  • Напор, создаваемый циркуляционным насосом с мокрым ротором, в большинстве случаев варьируется от 2 до 6 метров (0,2 - 0,6 кгс/см2).

Регулировка

Как отрегулировать напор в элеваторном узле?

Подпорная шайба

В случае если быть правильным, при подпорной шайбы требуется не регулировка напора, а периодическая замена шайбы на аналогичнуюиз-за абразивного износа узкого металлического страницы в технической воде. Как своими руками заменить шайбу?

Инструкция, в общем, достаточно несложна:

  1. Все задвижки либо вентиля в элеваторе перекрываются.
  2. Раскрывается по одному сброснику на обратке и подаче для осушения узла.
  3. Раскручиваются болты на фланце.
  4. Вместо ветхой шайбы устанавливается новая, снабженная парой прокладок - по одной с каждой стороны.

Совет: в отсутствие паронита шайбы вырезаются из ветхой автомобильной камеры. Не забудьте вырезать ушко, которое разрешит завести шайбу в паз фланца.

  1. Болты стягиваются попарно, крест-накрест. По окончании того, как прокладки прижаты, гайки закручиваются до упора не более чем на пол-оборота за раз. В случае если поспешить, неравномерное сжатие непременно приведет к тому, что прокладку оторвёт давлением с одной стороны фланца.

Система отопления

Перепад между смесью и обраткой штатно регулируется лишь заменой, завариванием либо рассверливанием сопла. Но время от времени появляется необходимость убрать перепад, не останавливая отопления (в большинстве случаев, при важных отклонениях от температурного графика в пик холодов).

Это делается регулировкой входной задвижки на обратном трубопроводе; тем самым мы убираем перепад между прямой и обратной нитками и между смесью и обраткой.


  1. Замеряем давление на подаче по окончании входной задвижки.
  2. Переключаем ГВС на подающую нитку.
  3. Вкручиваем манометр в сбросник на обратке.
  4. Всецело закрываем входную обратную задвижку и позже неспешно открываем ее, пока перепад не уменьшится от начального на 0,2 кгс/см2. Манипуляция с последующим открытием и закрытием задвижки нужна чтобы ее щечки максимально опустились на штоке. В случае если задвижку, щечки смогут просесть в будущем; цена смехотворной экономии времени - как минимум размороженное подъездное отопление.
  5. Температура обратного трубопровода контролируется с промежутком в день. При необходимости ее предстоящего понижения перепад убирается по 0,2 атмосферы за раз.

Давление в автономном контуре

Яркое значение слова "перепад" - изменение уровня, падение. В рамках статьи мы затронем и его. Итак, из-за чего падает давление в системе отопления, если она представляет собой замкнутый контур?

Для начала отыщем в памяти: вода фактически несжимаема.

Избыточное давление в контуре создается за счет двух факторов:

  • Наличия в системе мембранного расширительного бака с его воздушной подушкой.

С практической стороны это указывает, что регистрируемое манометром падение давления в системе отопления в большинстве случаев вызвано очень малым трансформацией объема контура либо уменьшением количества теплоносителя.

А вот вероятный перечень того и другого:

  • При нагреве полипропилен расширяется посильнее, чем вода. При запуске собранной из полипропилена системы отопления давление в ней может незначительно упасть.
  • Многие материалы (а также алюминий) достаточно пластичны чтобы при долгом действии умеренных давлений поменять форму. Алюминиевые радиаторы смогут просто-напросто раздуваться со временем.
  • Растворенные в воде газы неспешно покидают контур через воздухоотводчик, воздействуя на настоящий количество воды в нем.
  • Большой нагрев теплоносителя при заниженном объеме расширительного бака отопления может приводить к срабатыванию предохранительного клапана.

Наконец, нельзя исключать и в полной мере настоящие неисправности: незначительные течи по швам сварки и стыкам секций, травящий ниппель микротрещины и расширительного бака в теплообменнике котла.


Заключение

Сохраняем надежду, что нам удалось ответить на накопившиеся у читателя вопросы. Прикрепленное к статье видео, как в большинстве случаев, предложит его вниманию дополнительные тематические материалы. Удач!

Поделиться: