Расчет лифта газовых скважин. Выработка рекомендаций

контрольная работа

4. Расчет безводного дебита скважины, зависимость дебита от степени вскрытия пласта, параметра анизотропии

В большинстве газоносных пластов вертикальные и горизонтальные проницаемости различаются, причем, как правило, вертикальная проницаемость k в значительно меньше горизонтальной k г. Низкая вертикальная проницаемость снижает опасность обводнения газовых скважин, вскрывших анизотропные пласты с подошвенной водой в процессе их эксплуатации. Однако при низкой вертикальной проницаемости затрудняется и подток газа снизу в область влияния несовершенства скважины по степени вскрытия. Точная математическая связь между параметром анизотропии и величиной допустимой депрессии при вскрытии скважиной анизотропного пласта с подошвенной водой не установлена. Использование методов определения Q пр, разработанных для изотропных пластов, приводит к существенным погрешностям.

Алгоритм решения:

1. Определяем критические параметры газа:

2. Определяем коэффициент сверхсжимаемости в пластовых условиях:

3. Определяем плотность газа при стандартных условиях и далее при пластовых:

4. Находим высоту столба пластовой воды, необходимой для создания давления 0,1 МПа:

5. Определяем коэффициенты a* и b*:

6. Определяем средний радиус:

7. Находим коэффициент D:

8. Определяем коэффициенты K o , Q* и предельно безводный дебит Q пр.безв. в зависимости от степени вскрытия пласта h и для двух разных значений параметра анизотропии:

Исходные данные:

Таблица 1 - Исходные данные для расчета безводного режима.

Таблица 4 - Расчет безводного режима.

Анализ добывных возможностей скважин Озерного месторождения, оборудованных УЭЦН

Где - коэффициент продуктивности, ; - пластовое давление, ; - минимальное допустимое давление на забое,...

2. Нахождение распределения давления вдоль луча, проходящего через вершину сектора и центр скважины. 2. Анализ работы газовой скважины в секторе с углом р/2, ограниченном сбросами, при установившемся режиме фильтрации газа по закону Дарси 2...

Анализ работы газовой скважины в секторе с углом π/2, ограниченном сбросами, при установившемся режиме фильтрации газа по закону Дарси

Влияние изменения толщины газоносного пласта в процессе разработки газового месторождения

Установление технологического режима эксплуатации газовых скважин, вскрывших пласты с подошвенной водой, относится к задачам высшей сложности. Точное решение этой задачи с учетом нестационарности процесса конусообразования...

Геологическое строение и разработка Чекмагушевского нефтяного месторождения

Дебит - это главная характеристика скважины, которая показывает, какое максимальное количество воды она может дать в единицу времени. Дебит измеряется в м3/час, м3/день, л/мин. Чем больше дебит скважины, тем выше её производительность...

Гидродинамические исследования скважин Ямсовейского газоконденсатного месторождения

Уравнение притока газа к скважине рассчитывается по формуле: ,… (1) формула Г. А. Адамова для НКТ: ,… (2) уравнение движения газа в шлейфе: ,… (3) где Рпл- пластовое давление, МПа; Рвх - давление входа в коллектор...

Исследование движения жидкости и газа в пористой среде

1) Исследование зависимости дебита газовой скважины от угла б между непроницаемой границей и направлением на скважину при фиксированном расстоянии от вершины сектора до центра скважины...

Методы заводнения пластов

В настоящее время. Если ГЗУ оснащен турбинным объемным счетчиком, то на его показания влияют наличие жидкой фазы по всему сечению потока, величина вязкости, качество сепарации газа, наличие пенной структуры в измеряемой продукции...

Оценка производительности горизонтальных нефтяных скважин

нефтяной скважина производительность дренирование В этом нам поможет Excel файл, где применим формулу Джоши Заполняются желтые ячейки c 0,05432 коэф...

Подземная гидромеханика

Определяем дебит каждой скважины и суммарный дебит, если данный круговой пласт разрабатывается пятью скважинами, из которых 4 расположены в вершинах квадрата со стороной А = 500 м, а пятая - в центре...

Подземная гидромеханика

При плоскорадиальном вытеснении нефти водой дебит скважины определяется по формуле: (17) где: rн - координата (радиус) границы раздела нефть-вода в момент времени t...

Применение новых технологий при проведении ремонтно-изоляционных работ

В настоящее время большинство нефтяных месторождений находится на завершающей стадии разработки, на которой существенно осложняются процессы добычи, в частности, из-за высокой обводненности добываемой продукции...

Рассмотрим комплексный потенциал. Уравнение определяет семейство эквипотенциалей, совпадающих с изобарами : , (5) где - коэффициент проницаемости пласта, - динамический коэффициент вязкости насыщающей пласт жидкости...

Приток жидкости к скважине при частично изолированном контуре питания

Рассмотрим дебит при различных углах раскрытия проницаемого контура пласта (рис.10), полученный описанным методом с применением теории комплексного потенциала. Рис. 10 Зависимость дебита скважины от угла По графику видно...

Проект строительства горизонтальной добывающей нефтяной скважины глубиной 2910 м на Вынгапуровском месторождении

В настоящее время существует несколько способов вскрытия продуктивных горизонтов: при репрессии (Рпл < Рз), депрессии (Рпл > Рз) и равновесии. Бурение на депрессии и равновесии проводится только при полностью изученном разрезе...

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ


высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

Особенности разработки месторождений нефти горизонтальными скважинами

Методические указания

для самостоятельных работ по дисциплине «Особенности разработки месторождений горизонтальными скважинами» для магистров, обучающихся по специальности 131000.68 «Нефтегазовое дело»

Составители: С. И. Грачев, А.С. Самойлов, И.Б. Кушнарев


Министерство образования и науки РФ

Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

Институт геологии и нефтегазодобычи

Кафедра «Разработка и эксплуатация нефтяных и газовых месторождений»

Методические указания

По дисциплине «Особенности разработки месторождений нефти горизонтальными скважинами»

для практических, лабораторных занятий и самостоятельных работ для бакалавров направления 131000.62 «Нефтегазовое дело» для всех форм обучения



Тюмень 2013 г.


Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета

Методические указания предназначены бакалаврам направления 131000.62 «Нефтегазовое дело» для всех форм обучения. В методических указаниях приведены основные задачи с примерами решения по дисциплине «Особенности разработки месторождений нефти горизонтальными скважинами».

Составители: доцент, к.т.н. Самойлов А.С.

доцент, к.т.н. Фоминых О.В.

лаборант Невкин А.А.

© государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет» 2013 г.


ВВЕДЕНИЕ. 2

Тема 1. Расчет дебитов скважин с горизонтальным окончанием и сопоставление результатов. 7

Тема 2. Расчет дебита горизонтальной скважины и наклонно - направленной с трещиной ГРП по приведенным формулам, сопоставление результатов. 2

Тема 3. Расчет дебита многоствольной скважины. 17

Тема 4. Расчет оптимальной сетки горизонтальных скважин и сравнительная эффективность их работы с вертикальными. 21

Тема 5. Интерпретация результатов гидродинамических исследований скважин с горизонтальным окончанием на установившихся режимах (по методике Евченко В.С.). 2

Тема 6. Дебит горизонтальной скважины с трещинами ГРП, расположенной в анизотропном, полосообразном пласте. 34

Тема 7. Расчёт предельной безводной депрессии скважины с горизонтальным окончанием………………………………………………………………………30

Тема 8. Моделирование неустановившегося движения жидкости к горизонтальной скважине по двухзонной схеме………………………………45


ВВЕДЕНИЕ

При масштабном внедрении в начале 2000-х и в течение последующего десятилетия в систему разработки месторождений Западной Сибири горизонтальных скважин (ГС) и боковых горизонтальных стволов (БГС) достигалась форсированная выработка запасов нефти при быстрой окупаемости вложений без строительства новых скважин. Внедрение производилось в оперативном порядке, не всегда согласованно с принятыми проектными решениями, либо путем трансформации существующей системы разработки. Однако, без системного обоснования технологии горизонтального вскрытия и эксплуатации объектов, проектные значения коэффициента извлечения нефти (КИН) не достигаются.

В последние годы технологии горизонтального вскрытия уделяется много большее внимание при проектировании системы разработки, в некоторых компаниях обоснование строительства каждого ГС выполняется в виде мини-проекта. На что повлиял и мировой финансовый кризис, когда в целях оптимизации производства погрешность и доля неопределенности сводились к минимуму. К технологии горизонтального вскрытия применили новые подходы о чем свидетельствуют результаты эксплуатации, построенных ГС и БГС с 2009 г. (в ОАО «Сургутнефтегаз» построено более 350 скв., ОАО «Лукойл» более 200 скв., в ТНК-ВР более 100 скв., в ОАО «НГК «Славнефть» более 100 скв., в ОАО «Газпром нефть» более 70 скв., в ОАО «НК «Роснефть» более 50 скв., в ОАО НК «РуссНефть» более 20 скв.).

Известно, что не достаточно определить только основные параметры применения ГС: длину, профиль, расположение ствола относительно кровли и подошвы, предельные технологические режимы эксплуатации. Необходимо учитывать размещение и параметры сетки скважин, схемы вскрытия пластов и регулирование режимов их работы. Необходимо создание принципиально новых методов мониторинга и управления выработкой запасов нефти особенно для сложнопостроенных залежей, которые будут основаны на достоверном изучении геологического строения посредством исследования горизонтальных стволов, зависимости дебита нефти от неоднородности геологического строения и гидравлических сопротивлений по длине, создании равномерности выработки запасов нефти по всему объему коллектора дренируемого ГС, высокоточном определение зоны дренирования, возможности проведения и прогнозирования эффективности способов повышении нефтеотдачи пластов, определения главных напряжений пород, от учета которых напрямую зависит эффективность системы заводнения и механические методы воздействия на пласт (гидроразрыв пласта).

Целью настоящего методического указания является обеспечение студентов знаниями, которыми пользуется современная наука и производство при управлении продуктивностью скважин.

В методических указаниях для каждой задачи по темам представлен алгоритм расчета и приведен пример решения типовой задачи, что существенно помогает успешному выполнению задания. Однако, его применение возможно лишь после изучения теоретических основ.

Все расчеты следует проводить в рамках международной системы единиц (СИ).

Теоретические основы дисциплины хорошо изложены в учебниках, ссылки которых приведены.


Тема 1. Расчет дебитов скважин с горизонтальным окончанием и сопоставление результатов

Для определения дебита нефти в одиночной горизонтальной скважине в однородно анизотропном пласте используется формула S.D. Joshi:

где, Q г – дебит нефти горизонтальной скважины м 3 /сек; k h – горизонтальная проницаемость пласта м 2 ; h – нефтенасыщенная толщина, м; ∆P – депрессия на пласт, Па; μ н – вязкость нефти Па·с; B 0 – объемный коэффициент нефти; L – длина горизонтального участка скважины, м; r c – радиус ствола скважины в продуктивном пласте, м; – большая полуось эллипса дренирования (рис. 1.1), м:

, (1.2)

где R k – радиус контура питания, м; – параметр анизотропии проницаемости, определяемый по формуле:

k v – вертикальная проницаемость пласта, м 2 . В расчетах принята вертикальная проницаемость, равная 0,3·k h , осредненный параметр терригенных отложений Западной Сибири, также для достоверного расчета должно выполняться условие ‑ , .

Рисунок 1.1 - Схема притока к горизонтальному стволу в круговом пласте

Борисов Ю.Л. при описании эллиптического потока предложил другое условие для определения R k . В качестве данной величины здесь используется основной радиус эллипса (рис. 1.2), представляющий собой среднюю величину между полуосями:

(1.4)

Рисунок 1.2 - Схема притока к горизонтальному стволу в круговом пласте

Общая формула для притока к ГС, полученная Борисовым Ю.П., имеет следующий вид:

, (1.5)

где J – фильтрационное сопротивление, определяемое по формуле:

. (1.6)

Giger предлагает использовать формулу (1.8), где за фильтрационное сопротивление J принимать выражение

(1.7)

Общая формула для притока к ГС, полученная Giger аналогична уравнениям предыдущих авторов:

. (1.8)

Все условные обозначения параметров аналогичны представленным для уравнения Joshi S.D..

Задача 1.1. Для геолого-физических условий пласта ПК 20 Ярайнерского месторождения, представленных в таблице 1.1 рассчитать дебит скважины с горизонтальным окончанием Q г по представленным методикам, сопоставить полученные результаты, определить оптимальную длину горизонтального участка по графику зависимости дебита скважины от длины ГС для 10 значений (от изначального) с шагом в 50 метров для решений рассмотренных авторов.

Таблица 1.1

Решение. Задача решается следующим порядком:

1. Рассчитаем дебит ГС по методике Joshi S.D. Для этого необходимо определить параметр анизотропии из выражения 1.3 и большую полуось эллипса дренирования (выражение 1.2):

Подставляя полученные результаты в выражение 1.1 получаем,

2. Рассчитаем дебиты ГС по методике Борисова Ю.П.

Фильтрационное сопротивление, определяемое по формуле 1.6:

Для определения суточного дебита умножаем полученный результат на количество секунд в сутках (86 400).

3. Рассчитаем дебиты ГС по методике Giger.

Фильтрационное сопротивление J принимать выражение (1.7)

Определяем дебит ГС:

Для определения суточного дебита умножаем полученный результат на количество секунд в сутках (86 400).

4. Сопоставляем полученные результаты:

5. Рассчитаем дебиты скважины для 20 значений длины горизонтального участка с шагом в 50 метров по представленным методикам и построим графическую зависимость:

L длина горизонтального участка Дебит ГС, м 3 /сут (Joshi S.D.) Дебит ГС, м 3 /сут (Борисова Ю.П.) Дебит ГС, м 3 /сут (Giger)
1360,612 1647,162 1011,10254
1982,238 2287,564 1318,32873
2338,347 2628,166 1466,90284
2569,118 2839,562 1554,49788
2730,82 2983,551 1612,26295
2850,426 3087,939 1653,21864
2942,48 3167,09 1683,77018
3015,519 3229,168 1707,43528
3074,884 3279,159 1726,30646
3124,085 3320,28 1741,70642
3165,528 3354,7 1754,51226
3200,912 3383,933 1765,32852
3231,477 3409,07 1774,58546
3258,144 3430,915 1782,59759
3281,613 3450,074 1789,60019
3302,428 3467,016 1795,77275
3321,015 3482,103 1801,2546
3337,713 3495,624 1806,15552
3352,797 3507,811 1810,56322
3366,489 3518,853 1814,54859

Рисунок 1.3 – Зависимость изменения дебита скважины от длины горизонтального участка

Выводы: По результатам расчета прогнозного дебита горизонтальной скважины по методикам Joshi S.D., Борисова Ю.П., Giger для геолого-физических условий пласта ПК 20 Ярайнерского месторождения следует:

‑ при незначительном отличии (формой притока в горизонтальной проекции) аналитических моделей работы горизонтальных скважин, вскрывших однородно-анизотропный пласт в середине между кровлей и подошвой, отличие расчетных дебитов достаточно большое;

‑ для условий пласта ПК 20 Ярайнерского месторождения были построены графические зависимости прогнозного дебита скважины от длины горизонтального участка, по результатам анализа следует, что оптимальными будут варианты в интервале L 1 =150 м. Q 1 =2620 м 3 /сут до L 2 =400 м. Q 2 =3230 м 3 /сут;

‑ полученные значения являются первыми приближенными результатами подбора оптимальной длины горизонтального участка скважины, дальнейшее обоснование строится на уточнении прогнозных значений дебитов на цифровых моделях пласта и пересчете экономики, по результатам расчета которых будет выбран наиболее рациональный вариант.

Варианты Задача №1

Вар. №скв Месторождение, пласт Длина ГС, м h нн, м Kh, мД Кv, мД Вязкость, мПа*с Рпл, МПа Рзаб, МПа Радиус скв, м Rk,м
210Г Ярайнерское, ПК20 1,12 17,5 14,0 0,1
333Г Ярайнерское, АВ3 1,16 6,0 0,1
777Г Ярайнерское, АВ7 1,16 11,0 0,1
302Г Ярайнерское, АВ10 1,16 21,8 13,0 0,1
2046Г Ярайнерское, БВ2 0,98 21,1 13,7 0,1
4132Г Ярайнерское, БВ4 0,98 23,1 16,0 0,1
4100Г Ярайнерское, БВ4-1 0,98 23,3 16,0 0,1
611Г Ярайнерское, БВ6 0,51 16,0 0,1
8068Г Ярайнерское, БВ8 0,41 24,3 5,8 0,1
Ярайнерское, БВ8 0,41 24,3 11,2 0,1
215Г Ярайнерское, ПК20 1,12 17,5 15,0 0,1
334Г Ярайнерское, АВ3 1,16 11,0 0,1
615Г Ярайнерское, АВ7 1,16 16,0 0,1
212Г Ярайнерское, АВ10 1,16 21,8 15,0 0,1
2146Г Ярайнерское, БВ2 0,98 21,1 17,8 0,1
4025Г Ярайнерское, БВ4 0,98 23,1 13,0 0,1
513Г Ярайнерское, БВ4-1 0,98 23,3 18,0 0,1
670Г Ярайнерское, БВ6 0,51 19,5 0,1
554Г Ярайнерское, БВ8 0,41 24,3 11,34 0,1
877Г Ярайнерское, БВ8 0,41 24,3 16,2 0,1
Продолжение таблицы 1.1
322Г Ярайнерское, ПК20 1,12 17,5 14,9 0,1
554Г Ярайнерское, АВ3 1,16 15,3 0,1
789Г Ярайнерское, АВ7 1,16 12,7 0,1
Ярайнерское, АВ10 1,16 21,8 9,8 0,1
2475Г Ярайнерское, БВ2 0,98 21,1 12,9 0,1
4158Г Ярайнерское, БВ4 0,98 23,1 13,8 0,1
Ярайнерское, БВ4-1 0,98 23,3 18,2 0,1
688Г Ярайнерское, БВ6 0,51 14,3 0,1
8174Г Ярайнерское, БВ8 0,41 24,3 18,6 0,1
882Г Ярайнерское, БВ8 0,41 24,3 15,2 0,1

Контрольные вопросы.

Основным элементом системы водоснабжения является источник водоснабжения. Для автономных систем в частных домовладениях, на дачах или фермерских хозяйствах в качестве источников используют колодцы или скважины. Принцип водоснабжения прост: водоносный слой наполняет их водой, которая с помощью насоса подается пользователям. При длительной работе насоса, какова бы ни была его мощность, он не может подать воды больше, чем водонос отдает в трубу.

Любой источник имеет предельный объем воды, которую он может отдать потребителю за единицу времени.

Определения дебита

После бурения, проводившая работу организация предоставляет протокол испытания, либо паспорт на скважину, в который вносится все необходимые параметры. Однако, при бурении для домохозяйств, подрядчики часто вносят в паспорт приблизительные значение.

Перепроверить достоверность информации или рассчитать дебит вашей скважины можно своими руками.

Динамика, статика и высота столба воды

Прежде чем приступить к измерениям, нужно понять, что такое статический и динамический уровень воды в скважине, а также высота столба воды в скважинной колонне. Замер данных параметров необходим не только для расчета производительности скважины, но и для правильного выбора насосного агрегата для системы водоснабжения.

  • Статический уровень – это высота водяного столба при отсутствии водозабора. Зависит от внутрипластового давления и устанавливается во время простоя (как правило не менее часа);
  • Динамический уровень – установившейся уровень воды во время водозабора, то есть когда приток жидкости равняется оттоку;
  • Высота столба – разница между глубиной скважины и статическим уровнем.

Динамика и статика измеряется в метрах от земли, а высота столба от дна скважины

Произвести измерение можно с помощью:

  • Электроуровнемера;
  • Электрода, замыкающего контакт при взаимодействии с водой;
  • Обычного грузика, подвязанного к веревке.

Замер с помощью сигнализирующего электрода

Определение производительности насоса

При расчете дебита необходимо знать производительность насоса во время откачки. Для этого можно воспользоваться следующими способами:

  • Посмотреть данные расходомера или счетчика;
  • Ознакомиться с паспортом на насос и узнать производительность по рабочей точке;
  • Посчитать приблизительной расход по напору воды.

В последнем случае, необходимо на выходе водоподъемной трубы закрепить в горизонтальном положении трубу меньшего диаметра. И произвести следующие замеры:

  • Длину трубы (мин 1,5 м.) и ее диаметр;
  • Высоту от земли до центра трубы;
  • Длину выброса струи от конца трубы до точки падения на землю.

После получения данных необходимо сопоставить их по диаграмме.


Сопоставьте данные по аналогии с примером

Измерение динамического уровня и дебита скважины нужно производить насосом с производительностью не менее вашего расчетного пикового расхода воды.

Упрощенный расчет

Дебит скважины – это отношение произведения интенсивности водооткачки и высоты водяного столба к разности между динамическим и статическим водными уровнями. Для определения дебита скважины определения используется формула:

Dт =(V/(Hдин-Нст))*Hв , где

  • Dт –искомый дебит;
  • V – объем откачиваемой жидкости;
  • Hдин – динамический уровень;
  • Hст – статический уровень;
  • Нв – высота столба воды.

Например, мы имеем скважину глубиной 60 метров; статика которой составляет 40 метров; динамический уровень при работе насоса производительностью 3 куб.м/час установился на отметке 47 метров.

Итого, дебит составит: Dт = (3/(47-40))*20= 8,57 куб.м/час.

Упрощенный метод измерений включает замер динамического уровня при работе насоса с одной производительностью, для частного сектора этого может быть достаточно, но для определения точной картины – нет.

Удельный дебит

С увеличением производительности насоса, динамический уровень, а соответственно и фактический дебит снижается. Поэтому более точно водозабор характеризует коэффициент продуктивности и удельный дебит.

Для вычисления последнего следует произвести не один, а два замера динамического уровня при разных показателях интенсивности водозабора.

Удельный дебит скважины – объем воды, выдаваемой при снижении ее уровня за каждый метр.

Формула определяет его как отношение разности большего и меньшего значений интенсивности водозабора к разности между величинами падения водного столба.

Dуд=(V2-V1)/(h2-h1), где

  • Dуд – удельный дебит
  • V2 – объем откачиваемой воды при втором водозаборе
  • V1 – первичный откачиваемый объем
  • h2 – снижение уровня воды при втором водозаборе
  • h1 – снижение уровня при первом водозаборе

Возвращаясь к нашей условной скважине: при водозаборе с интенсивностью 3 куб.м/час, разница между динамикой и статикой составила 7 м.; при повторном замере с производительностью насоса в 6 куб.м/час разница составила 15 м.

Итого, удельный дебит составит: Dуд =(6-3)/(15-7)= 0,375 куб.м/час

Реальный дебит

Расчет строится на основании удельного показателя и расстоянии от поверхности земли до верхней точки фильтровальной зоны, учитывая условие, что насосный агрегат не будет погружен ниже. Данный расчет максимально соответствует реальности.

D т = (H ф- H ст ) * D уд, где

  • Dт –дебит скважины;
  • Hф – расстояние до начала фильтровальной зоны (в нашем случае примем за 57 м.);
  • Hст – статический уровень;
  • Dуд – удельный дебит.

Итого, реальный дебит составит: Dт =(57-40)*0,375= 6,375 куб.м/час.

Как видно, в случае с нашей воображаемой скважиной, разница между упрощенным и последующем измерением составила почти 2,2 куб.м/час в сторону уменьшения производительности.

Снижение дебита

В ходе эксплуатации производительность скважины может уменьшаться, основной причиной снижения дебита является засорение, а для его увеличения до прежнего уровня необходимо производить очистку фильтров.

Со временем рабочие колеса центробежного насоса могут износиться, особенно если ваша скважина на песке, в этом случае его производительность станет ниже.

Однако, прочистка может не помочь, если изначально у вас оказалась малодебитная водяная скважина. Причины этого разные: диаметр эксплуатационной трубы недостаточен, она попала мимо водоносного слоя или он содержит мало влаги.

1

Методики определения предельных безводных дебитов газовых скважин при наличии экрана и интерпретация результатов исследования таких скважин разработаны недостаточно. До настоящего времени вопрос о возможности увеличения предельных безводных дебитов скважин, вскрывающих газоносные пласты с подошвенной водой, способом создания искусственного экрана, изучен также недостаточно полно. Здесь приводится аналитическое решение указанной задачи и рассмотрен случай, когда несовершенная скважина вскрыла однородно-анизотропный круговой пласт с подошвенной водой и эксплуатируется при наличии непроницаемого экрана. Разработана приближенная методика расчета предельных безводных дебитов вертикальных газовых скважин при нелинейном законе фильтрации, обусловленных наличием непроницаемого забойного экрана. Установлено, что величина предельного безводного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта; определено оптимальное положение экрана, характеризующее наибольшим предельным дебитом. Произведены практические расчеты на конкретных примерах.

методика расчета

безводный дебит

вертикальная скважина

газовая скважина

1. Карпов В.П., Шерстняков В.Ф. Характер фазовых проницаемостей по промысловым данным. НТС по добыче нефти. – М.: ГТТИ. – №18. – С. 36-42.

2. Телков А.П. Подземная гидрогазодинамика. – Уфа, 1974. – 224 с.

3. Телков А.П., Грачёв С.И. и др. Особенности разработки нефтегазовых месторождений (Часть II). – Тюмень: из-во ОООНИПИКБС-Т, 2001.– 482 с.

4. Телков А.П., Стклянин Ю.И. Образование конусов воды при добычи нефти и газа. – М.: Недра, 1965.

5. Стклянин Ю.И., Телков А.П. Приток к горизонтальной дрене и несовершенной скважине в полосообразном анизотропном пласте. Расчет предельных безводных дебитов. ПМТФ АН СССР. – № 1. – 1962.

В данной статье приводится аналитическое решение указанной задачи и рассмотрен случай, когда несовершенная скважина вскрыла однородно-анизотропный круговой пласт с подошвенной водой и эксплуатируется при наличии непроницаемого экрана (рисунок 1). Считаем, что газ реальный, движение газа, установившееся и подчиняется нелинейному закону фильтрации.

Рис.1. Трехзонная схема притока газа к несовершенной скважине с экраном

Исходя из принятых условий, уравнения притока газа к скважине в зонах I, II, III соответственно примут вид:

; ; (2)

; ; , (3)

где a и b определяются по формулам. Остальные обозначения показаны на схеме (см. рисунок 1). Уравнения (2) и (3) в данном случае описывают приток к укрупненным скважинам соответственно с радиусами rэ и (rэ+ho).

Условие устойчивости на границе раздела газ-вода (см. линию СD) по закону Паскаля запишется уравнением

где ρв - плотность воды, - капиллярное давление как функция насыщенности водой на границе раздела газ-вода.

Решая совместно (1)-(3), после ряда преобразований, получаем уравнение притока

Из совместного решения (2) и (4) получаем квадратное уравнение относительно безразмерного предельного дебита , один из корней которого с учетом (7) и после ряда преобразований представляется выражением:

где (7)

(8)

Переход к размерному предельному безводному дебиту осуществляется по формулам:

(9)

где - средневзвешенное давление в газовой залежи.

Таблица 1

Значения фильтрационных сопротивлений, обусловленных экраном на забое

Добавочные фильтрационные сопротивления и , обусловленные экраном, рассчитаны на ЭВМ по формулам (6), затабулированы (таблица 1) и представлены графиками (рисунок 2). Функция (6) рассчитана на ЭВМ и представлена графически при (рисунок 3). Предельная депрессия может быть установлена по уравнению притока (4.4.4) при Q=Qпр.

Рис.2. Фильтрационные сопротивления и , обусловленные экраном при устойчивой границе раздела газ-вода

Рис.3. Зависимость безразмерного предельного дебита qпр от относительного вскрытия при параметрах , ρ=1/æ* и α

На рисунке 3 приведены зависимости безразмерного предельного дебита q от степени вскрытия при параметрах Rэ и α. Кривые показывают, что с увеличением размера экрана (<20) безводные дебиты увеличиваются. Максимум на кривых соответствует оптимальному вскрытию пласта, при котором можно получить наибольший предельный безводный дебит для заданного размера экрана. С увеличением параметра ρ=1/æ* (уменьшением анизотропии) предельный безводный дебит увеличивается, а уменьшение безводного дебита для малых вскрытий объясняется увеличением фильтрационных сопротивлений, обусловленных экраном на забое.

Пример. Дренируется газовая шапка, контактирующая с подошвенной водой. Требуется определить: предельный дебит газовой скважины, ограничивающий прорыв ГВК к забою и предельный дебит при наличии непроницаемого экрана.

Исходные данные: Рпл=26,7 МПа; К=35,1·10-3 мкм2; Ro=300 м; ho=7,2 м; =0,3; =978 кг/м3; =210 кг/м3 (в пластовых условиях); æ*=6,88; =0,02265 МПа·с (в пластовых условиях); Тпл=346 К; Тст=293 К; Рат=0,1013 МПа; rэ=ho=7,2 м и rэ=0,5ho=3,6 м.

Определяем параметр размещения

Из графиков находим безразмерный предельный безводный дебит жидкости q(ρо,)q(6,1;0,3)=0,15.

По формуле (9) подсчитываем:

Qo=52,016 тыс. м3/сут; тыс. м3/сут.

Определяем безразмерные параметры при наличии экрана:

По графикам (см. рисунок 2) или таблице находим добавочные фильтрационные сопротивления: С1= С1(0,15;0,3;1)=0,6; С2= С2(0,15;0,3;1)=3,0.

По формуле (7) находим безразмерный параметр α=394,75.

По формуле (9) подсчитываем дебит, который составил Qo47,9 тыс.м3/сут.

Расчеты по формулам (7) и (8) дают: Х=51,489 и Y=5,773·10-2.

Безразмерный предельный дебит, рассчитанный по формуле (6), равен q=1,465.

Определяем размерный предельный дебит, обусловленный экраном, из соотношения Qпр=qQo=1,465·47,970,188 тыс.м3/сут.

Расчетный предельный дебит без экрана с аналогичными исходными параметрами составляет 7,8 тыс. м3/сут. Таким образом, в рассматриваемом случае наличие экрана увеличивает предельный дебит почти в 10 раз.

Если принять rэ=3,6 м; т.е. в два раза меньше размеру, чем газонасыщенная толщина, тогда получаем следующие расчетные параметры:

2; С1=1,30; С2=5,20; Х=52,45; Y=1,703·10-2; q=0,445 и Qпр=21,3 тыс.м3/сут. В данном случае предельный дебит увеличивается всего лишь в 2,73 раза.

Следует отметить, что величина предельного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта, т.е. от относительного вскрытия пласта , если экран располагается непосредственно перед забоем. Исследование решения (6) показало, что существует оптимальное положение экрана, зависящее от параметров ρ, α, Rэ, которое соответствует наибольшему предельному дебиту. В рассмотренной задаче оптимальным вскрытием является =0,6.

Принимаем ρ=0,145 и =1. По изложенной методике получаем расчетные параметры: С1=0,1; С2=0,5; X=24,672; Y=0,478.

Определяем безразмерный дебит:

q=24,672(-1) 5,323.

Размерный предельный дебит находится по формуле (9)

Qпр=qQo=5,323·103=254,94 тыс.м3/сут.

Таким образом, дебит по сравнению с относительным вскрытием =0,3 увеличился в 3,6 раза.

Изложенный здесь способ определения предельного безводного дебита является приближенным, так как он рассматривает устойчивость конуса, вершина которого уже достигла радиуса экрана rэ.

При из приведенных решений получим формулы для определения q() для несовершенной газовой скважины в условиях нелинейного закона фильтрации с учетом добавочных фильтрационных сопротивлений. Эти формулы также будут приближенными, и по ним рассчитывается завышенное значение предельного безводного дебита.

Для построения двухчленного уравнения притока газа в условиях предельно-устойчивого конуса подошвенной воды необходимо знать фильтрационные сопротивления именно в этих условиях. Определить их можно исходя из теории устойчивого конусообразования Маскета-Чарного. Уравнение линии тока, ограничивающей область пространственного движения к несовершенной скважине в однородно-анизотропном пласте, когда уже произошел прорыв вершины конуса к забою скважины, в соответствии с теорией безнапорного движения, запишем в виде

(10)

где q= - безразмерный предельный безводный дебит, определяемый по приведенным (известным) приближенным формулам и графикам; - безразмерный параметр.

Выражая скорость фильтрации через расход , подставляя уравнение границы раздела (10) в дифференциальное уравнение (1), учитывая закон газового состояния и интегрируя по давлению Р и радиусу r в соответствующих пределах, получим уравнение притока вида (12) и формулы (13), в которых следует принять:

; , (11)

(12)

где Li(x) - интегральный логарифм, который связан с интегральной функцией зависимостью .

(13)

При x>1 интеграл (13) расходится в точке t=1. В этом случае под Li(x) надо понимать значение несобственного интеграла. Поскольку методы определения безразмерных предельных безводных дебитов хорошо известны, то, очевидно, нет необходимости табулировать функции (11) и (12).

1. Разработана приближенная методика расчета предельных безводных дебитов вертикальных газовых скважин при нелинейном законе фильтрации, обусловленных наличием непроницаемого забойного экрана. Безразмерные предельные дебиты и соответствующие добавочные фильтрационные сопротивления рассчитаны на компьютере, результаты затабулированы и приведены соответствующие графические зависимости.

2. Установлено, что величина предельного безводного дебита зависит не только от размеров экрана, но и от его положения по вертикали газонасыщенного пласта; определено оптимальное положение экрана, характеризующее наибольшим предельным дебитом.

3. Произведены практические расчеты на конкретном примере.

Рецензенты:

Грачев С.И., д.т.н., профессор, заведующий кафедрой «Разработка и эксплуатация нефтяных и газовых месторождений», Институт геологии и нефтегазодобычи, ФГБОУ ТюмГНГУ, г. Тюмень;

Сохошко С.К., д.т.н., профессор, профессор кафедры «Разработка и эксплуатация нефтяных и газовых месторождений», Институт геологии и нефтегазодобычи, ФГБОУ ТюмГНГУ, г. Тюмень.

Библиографическая ссылка

Каширина К.О., Забоева М.И., Телков А.П. МЕТОДИКА РАСЧЕТА ПРЕДЕЛЬНЫХ БЕЗВОДНЫХ ДЕБИТОВ ВЕРТИКАЛЬНЫХ ГАЗОВЫХ СКВАЖИН ПРИ НЕЛИНЕЙНОМ ЗАКОНЕ ФИЛЬТРАЦИИ И НАЛИЧИИ ЭКРАНА // Современные проблемы науки и образования. – 2015. – № 2-2.;
URL: http://science-education.ru/ru/article/view?id=22002 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Дебит скважины - это основной параметр скважины , показывающий, сколько воды можно из нее получить за определенный промежуток времени. Измеряется данная величина в м 3 /день, м 3 /час, м 3 /мин. Следовательно, чем больше дебит скважины, тем выше ее производительность.

Определять дебит скважины нужно в первую очередь для того, чтобы знать на какой объем жидкости вы можете рассчитывать. Например, хватит ли воды для бесперебойного использования в ванной комнате, в огороде для полива и т.д. Кроме того, данный параметр отлично помогает в выборе насоса для подачи воды. Так, чем он больше, тем более производительный насос можно использовать. Если же покупать насос не обращая внимания на дебит скважины, то может случиться так, что он будет высасывать воду из скважины быстрей, чем она будет наполняться.

Статический и динамический уровни воды

Для того, чтобы рассчитать дебет скважины необходимо знать статический и динамический уровни воды. Первая величина обозначает уровень воды в спокойном состоянии , т.е. в тот момент, когда откачка воды еще не производилась. Вторая величина определяет устоявшийся уровень воды во время работы насоса , т.е. когда скорость ее выкачивания равна скорости наполнения скважины (вода перестает убывать). Другими словами, данный дебит напрямую зависит от производительности насоса, которая указывается в его паспорте.

Оба эти показателя измеряются от поверхности воды до поверхности земли. Единица измерения при этом чаще всего выбирается метр. Так, к примеру, уровень воды был зафиксирован на отметке 2 м, а после включения насоса он установился на отметке 3 м, следовательно, статический уровень воды равен 2 м, а динамический - 3 м.

Также здесь хотелось бы отметить, что если разница между двумя этими величинами не значительная (например, 0,5-1 м), то можно сказать, что дебет скважины большой и скорее всего выше производительности насоса.

Расчет дебита скважины

Как же определяется дебит скважины? Для этого требуется высокопроизводительный насос и мерная емкость для выкаченной воды, желательно, как можно больших размеров. Сам же расчет лучше рассматривать на конкретном примере.

Исходные данные 1:

  • Глубина скважины - 10 м .
  • Начало уровня фильтрационной зоны (зона забора воды с водоносного слоя) - 8 м .
  • Статический уровень воды - 6 м .
  • Высота столба воды в трубе - 10-6 = .
  • Динамический уровень воды - 8,5 м . Данная величина отражает оставшееся количество воды в скважине после откачки из нее 3 м 3 воды, при затраченном времени на это 1 час. Другими словами, 8,5 м - это динамический уровень воды при дебете 3 м 3 /час, который снизился на 2,5 м.

Расчет 1:

Дебит скважины рассчитывается по формуле:

D ск = (U/(H дин -Н ст))·H в = (3/(8,5-6))*4 = 4,8 м 3 /ч,

Вывод: дебет скважины равен 4,8 м 3 /ч .

Представленный расчет очень часто применяется бурильщиками. Но он несет в себе очень большую погрешность. Так как этот расчет предполагает, что динамический уровень воды будет увеличиваться прямопропорционально скорости выкачивания воды. Например, при увеличении откачки воды до 4 м 3 /ч, согласно ему, уровень воды в трубе падает на 5 м, а это неверно. Поэтому есть более точная методика с включением в расчет параметров второго водозабора для определения удельного дебита.

Что нужно при этом делать? Необходимо после первого водозабора и снятия данных (предыдущий вариант), дать воде устояться и вернуться к своему статическому уровню. После этого произвести выкачивание воды с другой скоростью, например, 4 м 3 /час.

Исходные данные 2:

  • Параметры скважины те же.
  • Динамический уровень воды - 9,5 м . При интенсивности водозабора 4 м 3 /ч.

Расчет 2:

Удельный дебит скважины рассчитывается по формуле:

D у = (U 2 -U 1)/(h 2 -h 1) = (4-3)/(3,5-2,5) = 1 м 3 /ч,

В итоге получается, что повышение динамического уровня воды на 1 м способствует приросту дебита на 1 м 3 /ч. Но это только при условии, что насос будет находиться не ниже начала фильтрационной зоны.

Реальный дебит здесь вычисляется по формуле:

D ск = (Н ф -Н ст)·D у = (8-6)·1 = 2 м 3 /ч,

  • H ф = 8 м - начало уровня фильтрационной зоны.

Вывод: дебет скважины равен 2 м 3 /ч .

После сравнения видно, что величины дебита скважины в зависимости от методики расчета отличаются друг от друга более, чем в 2 раза. Но второй расчет то же не точный. Дебит скважины, вычисленный через удельный дебит, лишь приближен к реальном значению.

Способы увеличения дебита скважины

В заключении хотелось бы упомянуть о том, как можно увеличить дебит скважины. Способа по сути дела два. Первый способ - это прочистить эксплуатационную трубу и фильтр в скважине. Второй заключается в том, чтобы проверить работоспособность насоса. Вдруг именно по его причине снизилось количество добываемой воды.

Поделиться: