Антикоррозийная защита трубопроводов. Способы антикоррозийной защиты трубопроводов и требования к ним

Коррозия трубопроводов представляет собой основную причину возникновения разгерметизации, в результате которой на поверхности трубы появляются трещины, разрывы и каверны. И поэтому, защита трубопроводов от коррозии является задачей не только строителей или изготовителей, но также специалистов создающих проекты и тех, кто будет ими пользоваться.

Причиной возникновения ржавчины и коррозии на стальных резервуарах может стать неподходящий состав протекающей по ним жидкости, неправильное сочетание различных металлов, а также недостаточная борьба с коррозией и плохо подобранные способы протекции. Опасность коррозии заключается в том, что она может стать причиной течи трубопроводов. Выполнить ремонт труб, после повреждения можно только используя сварку.

Причины возникновения

Коррозия стальных подземных труб представляет собой явление, основной причиной которого можно назвать реакции электрохимического окисления металлов от их постоянного взаимодействия с влагой. В результате таких реакций, состав металла меняется на ионном уровне, покрывается ржавчиной, распадается и просто пропадает с поверхности.

На процесс окисления может оказывать влияние характер жидкости, которая течет по подземному трубопроводу отопления или свойства среды, в которых он расположен. Именно по этой причине, выбирая подходящие средства для борьбы с ржавчиной необходимо учитывать все особенности, предшествовавшие ее возникновению. В противном случае, ремонт при помощи сварки неизбежен.

Виды защиты

На сегодняшний день существует несколько различных методов для обработки подземных труб отопления от ржавчины и коррозии. Все они основаны на принципе специальной обработки, в процессе которой металл, из которого сделаны резервуары, вступает в реакцию с вводимыми веществами и растворами. В результате таких действий образуется специальная пленка, которая и обеспечивает защиту.

Можно выделить несколько основных видов антикоррозийных способов защиты:

  • обработка жидкости посредством реагентов химического характера;
  • обработка стенок;
  • блуждающий ток;
  • катодная;
  • анодная.

Обработка жидкости

Жидкость, которая протекает по трубопроводу, может иметь некоторые агрессивные качества. Агрессивный состав воды может стать следствием содержания в ней карбонатов, бикарбонатов или кислорода, которые становятся причиной того, что металл покрывается ржавчиной.

Выполнить качественную очистку стенок подземных труб или прочистить их полностью достаточно сложно технически. Основной задачей химической обработки воды является превращение ее состава из агрессивного в слабокальцирующий. Такая обработка подземных труб отопления от ржавчины зачастую сводиться к добавлению в воду соды, кальция или карбоната натрия.

На тех участках водопроводов, в которых вода может распределяться по отдельным точкам водозабора, ее дальнейшая обработка осуществляется при помощи добавления полифосфатов.

Антикоррозийная защита оцинкованных подземных резервуаров осуществляется при помощи добавления силикатов, фосфатов и поликарбонатов. Таким образом, на внутренней поверхности оцинкованных труб появляется специальная пленка, препятствующая возникновению коррозии.

Обработка стенок

Обработка стенок используется в качестве их защиты от коррозии уже много лет. Для выполнения такого комплекса мероприятий покрытие наносится на внешнюю или внутреннюю стенку подземной трубы.

Благодаря гальванике на поверхности формируется активная или пассивная пленка высокой прочности, которая не позволяет агрессивной среде проникнуть в глубокие слои металла. Эффект от таких действий может легко сохраняться на достаточно длительный период.

Как правило, на поверхность изделия наносится другой металл. Чаще всего для этого используется цинк, на который коррозия не воздействует. На поверхность металла может наноситься краска, лак или эмаль, которые также выступают в роли эффективной обработки газопроводов.

Для достижения максимального эффекта при борьбе с ржавчиной часто используются сплавы таких металлов как цинк или магний. Специалисты утверждают, что цинкование труб представляет собой самый популярный из всех существующих на сегодняшний день методов обработки.

Блуждающий ток

Блуждающий ток представляет собой ток, который образуется в грунтах при дисперсии электрифицированных путей. Энергия поступает к точке, являющейся катодом, и выходит в точке, которая является анодом.

В ходе процесса происходит электролиз, который может стать причиной появления ржавчины и повреждения резервуара. В этом случае, антикоррозийной изоляцией подземных трубопроводов является дренаж электрического характера.

Кабеля с низким сопротивлением подключаются к источнику тока в специально определенных местах.

Индуцированный ток

Катодная антикоррозийная протекция подземных резервуаров основана на использовании электрического тока, который подается в постоянном режиме и не дает пленке для защиты металла разрушаться.

Этот способ выполняется за счет использования кабеля с низким электросопротивлением, но при этом отличной изоляцией. Сам трубопровод в этом случае выполняет роль катода и таким образом защищается от возможных процессов коррозии.

Расходуемый анод

Еще одним довольно эффективным видом защиты от блуждающих токов является анодная химзащита. Заглубленный магниевый блок выполняет функции анода в коррозийной среде. Благодаря медленному разложению магния происходит изоляция магистральных стальных трубопроводов от подземных блуждающих токов. Такой вид защиты чаще всего используется для защиты изделий ограниченной длины или для резервуаров, которые выполнены из стали.

Как правило, анод помещается в мешок из хлопка или джута, который в свою очередь погружается в глинистую смесь. Основной задачей такой упаковки является обеспечение равномерности расхода анода, а также сохранения необходимого уровня влажности.

Такая система предотвратит появление пленки, которая может затруднить разложение анода.

Можно отметить, что лучшим способом защиты внутренней и внешней поверхности труб от возникновения коррозийных процессов будет использование материалов, которые менее всего им подвержены. И, тем не менее, даже на таких материалах в силу определенных причин могут возникать очаги коррозии и повреждения различного рода. И поэтому, лучше всего уже в процессе использования труб использования труб использоваться один из самых подходящих из используемых на сегодняшний день методов защиты.

Транспортировка нефти, газа и нефтепродуктов по трубопроводам является наиболее эффективным и безопасным способом их транспортировки на значительные расстояния. Этим способом доставки нефти и газа от районов их добычи к потребителям пользуются уже более 100 лет. Долговечность и безаварийность работы трубопроводов напрямую зависит от эффек-тивности их противокоррозионной защиты. Для сведения к минимуму риска коррозионных повреждений трубопроводы защищают антикоррозионными покрытиями и дополнительно средствами электрохимзащиты (ЭХЗ). При этом изоляционные покрытия обеспечивают первичную ("пассивную") защиту трубопроводов от коррозии, выполняя функцию "диффузионного барьера", через который затрудняется доступ к металлу коррозионноактивных агентов (воды, кислорода воздуха). При появлении в покрытии дефектов предусматривается система катодной защиты трубопроводов - "активная" защита от коррозии.

Для того, чтобы защитное покрытие эффективно выполняло свои функции, оно должно удовлетворять целому ряду требований, основными из которых являются: низкая влагокислородопроницаемость, высокие механические характеристики, высокая и стабильная во времени адгезия покрытия к стали, стойкость к катодному отслаиванию, хорошие диэлектрические характеристики, устойчивость покрытия к УФ и тепловому старению. Изоляционные покрытия должны выполнять свои функции в широком интервале температур строительства и эксплуатации трубопроводов, обеспечивая их защиту от коррозии на максимально возможный срок их эксплуатации.

История применения защитных покрытий трубопроводов насчитывает более 100 лет, однако до сих пор не все вопросы в этой области благополучно решены. С одной стороны, постоянно повышается качество защитных покрытий трубопроводов, практически каждые 10 лет появляются новые изоляционные материалы, новые технологии и оборудование для нанесения покрытий на трубы в заводских и трассовых условиях. С другой стороны, становятся все более жесткими условия строительства и эксплуатации трубопроводов (строительство трубопроводов в условиях Крайнего Севера, в Западной Сибири, освоение морских месторождений нефти и газа, глубоководная прокладка, строительство участков трубопроводов методами "наклонно-направленного бурения", "микротоннелирования", эксплуатация трубопроводов при температурах до 100 °С и выше, и др.).

Рассмотрим основные типы современных антикоррозионных покрытий трубопроводов заводского и трассового нанесения, их преимущества, недостатки, область применения.

Антикоррозионные покрытия трубопроводов трассового нанесения

Для изоляции трубопроводов в трассовых условиях в настоящее время наиболее широко применяют три типа защитных покрытий:
а) битумно-мастичные покрытия;
б) полимерные ленточные покрытия;
в) комбинированные мастично-ленточные покрытия (покрытия типа "Пластобит").

Битумно-мастичные покрытия

На протяжении многих десятилетий битумно-мастичное покрытие являлось основным типом наружного защитного покрытия отечественных трубопроводов. К преимуществам битумно-мастичных покрытий следует отнести их дешевизну, большой опыт применения, достаточно простую технологию нанесения в заводских и трассовых условиях. Битумные покрытия про-ницаемы для токов электрозащиты, хорошо работают совместно со средствами электрохимической защиты. В соответствии с требованиями ГОСТ Р 51164-98 "Трубопроводы стальные магистральные. Общие требования к защите от коррозии" конструкция битумно-мастичного покрытия состоит из слоя битумной или битумно-полимерной грунтовки (раствор битума в бензине), двух или трех слоев битумной мастики, между которыми находится ар-мирующий материал (стеклохолст или стеклосетка) и наружного слоя из защитной обертки. В качестве защитной обертки ранее использовались оберточные материалы на битумно-каучуковой основе типа "бризол", "гидроизол" и др. или крафт-бумага. В настоящее время применяют преимущественно полимерные защитные покрытия толщиной не менее 0,5 мм, грунтовку битумную или битумно-полимерную, слой мастики битумной или битумно-полимерной, слой армирующего материала (стеклохолст или стеклосетка), второй слой изоляционной мастики, второй слой армирующего материала, наружный слой защитной полимерной обертки. Общая толщина битумно-мастичного покрытия усиленного типа составляет не менее 6,0 мм, а для по-крытия трассового нанесения нормального типа - не менее 4,0 мм.

В качестве изоляционных мастик для нанесения битумно-мастичных покрытий применяются: битумно-резиновые мастики, битумно-полимерные мастики (с добавками полиэтилена, атактического полипропилена), битумные мастики с добавками термоэластопластов, мастики на основе асфальтосмолистых соединений типа "Асмол". В последние годы появился целый ряд битумных мастик нового поколения, обладающих повышенными показателями свойств.

Основными недостатками битумно-мастичных покрытий являются: узкий температурный диапазон применения (от минус 10 до плюс 40 °С), недостаточно высокая ударная прочность и стойкость к продавливанию, повышенная влагонасыщаемость и низкая биостойкость покрытий. Срок службы битумных покрытий ограничен и, как правило, не превышает 10-15 лет. Рекомендуемая область применения битумно-мастичных покрытий - защита от коррозии трубопроводов малых и средних диаметров, работающих при нормальных температурах эксплуатации. В соответствии с требованиями ГОСТа Р 51164-98 применение битумных покрытий ограничивается диаметрами трубопроводов не более 820 мм и температурой эксплуатации не выше плюс 40 °С.

Полимерные ленточные покрытия

Полимерные ленточные покрытия за рубежом стали применяться в начале 60-х гг. прошлого века. В нашей стране пик применения полимерных ленточных покрытий пришелся на 70-80 гг., на период строительства целой сети протяженных магистральных газопроводов. К настоящему времени на долю полимерных ленточных покрытий на российских газопроводах приходится до 60-65% от их общей протяженности.

Конструкция полимерного ленточного покрытия трассового нанесения в соответствии с ГОСТ Р 51164-98 состоит из слоя адгезионной грунтовки, 1 слоя полимерной изоляционной ленты толщиной не менее 0,6 мм и 1 слоя защитной полимерной обертки толщиной не менее 0,6 мм. Общая толщина покрытия - не менее 1,2 мм.

При заводской изоляции труб количество слоев изоляционной ленты и обертки увеличивается. При этом общая толщина покрытия должна составлять: не менее 1,2 мм - для труб диаметром до 273 мм, не менее 1,8 мм - для труб диаметром до 530 мм и не менее 2,4 мм - для труб диаметром до 820 мм включительно.

Начиная с 1 июля 1999 г., после введения в действие ГОСТа Р 51164-98, применение липких полимерных лент при трассовой изоляции газопроводов ограничено диаметрами труб не выше 820 мм и температурой эксплуатации не выше плюс 40 °С. Для нефте- и нефтепродуктопроводов допускается применять ленточные покрытия трассового нанесения при изоляции труб диаметром до 1420 мм, но при этом общая толщина покрытия должна составлять не менее 1,8 мм (наносятся 2 слоя полимерной ленты и 1 слой защитной обертки).

В системе полимерного ленточного покрытия функции изоляционной ленты и защитной обертки различные. Изоляционная лента обеспечивает адгезию покрытия к стали (не менее 2 кг/см ширины), стойкость к катодному отслаиванию, выполняет функции защитного барьера, препятствующего проникновению к поверхности труб воды, почвенного электролита, кислорода, т.е. коррозионноактивных агентов. Защитная обертка служит в основном для повышения механической, ударной прочности покрытия. Она предохраняет ленточное покрытие от повреждений при укладке трубопровода в траншею и засыпке его грунтом, а также при усадке грунта и технологических подвижках трубопровода.

Полимерные ленты, защитные обертки поставляются комплектно с адгезионной грунтовкой (праймером) заводского изготовления.

Для наружной изоляции трубопроводов в настоящее время применяются в основном отечественные изоляционные материалы производства ОАО "Трубоизоляция", (г. Новокуйбышевск, Самарской область): адгезионные грунтовки типа "П-001", "НК-50", полимерные ленты типа "НК ПЭЛ-45", "НКПЭЛ-63", "Полилен", "ЛДП", защитная обертка "Полилен О". Основ-ными зарубежными поставщиками изоляционных материалов для нанесения полимерного ленточного покрытия являются фирмы: "Polyken Pipeline Coating Systems" (США), "Altene" (Италия), "Nitto Denko Corporation", "Furukawa Electric" (Япония).

К преимуществам ленточных покрытий следует отнести: высокую технологичность их нанесения на трубы в заводских и трассовых условиях, хорошие диэлектрические характеристики, низкую влагокислородопроницаемость и достаточно широкий температурный диапазон применения.

Основными недостатками полимерных ленточных покрытий являются: низкая устойчивость к сдвигу под воздействием осадки грунта, недостаточно высокая ударная прочность покрытий, экранировка ЭХЗ, низкая биостойкость адгезионного подслоя покрытия.

Опыт эксплуатации отечественных газонефтепроводов показал, что срок службы полимерных ленточных покрытий на трубопроводах диаметром 1020 мм и выше составляет от 7 до 15 лет, что в 2-4 раза меньше нормативного срока амортизации магистральных трубопроводов (не менее 33 лет). В настоящее время в ОАО "Газпром" проводятся масштабные работы по ремонту и переизоляции трубопроводов с наружными полимерными ленточными покрытиями после 20-30 лет их эксплуатации.

Комбинированное мастично-ленточное покрытие

У российских нефтяников большой популярностью пользуется комбинированное мастично-ленточное покрытие типа "Пластобит". Конструктивно покрытие состоит из слоя адгезионного праймера, слоя изоляционной мастики на основе битума или асфальтосмолистых соединений, слоя изоляционной полимерной ленты толщиной не менее 0,4 мм и слоя полимерной защитной обертки толщиной не менее 0,5 мм. Общая толщина комбинированного мастично-ленточного покрытия составляет не менее 4,0 мм.

При нанесении изоляционной битумной мастики в зимнее время ее, как правило, пластифицируют, вводят добавки специальных масел, которые предотвращают охрупчивание мастики при отрицательных температурах окружающей среды. Битумная мастика, наносимая по праймеру, обеспечивает адгезию покрытия к стали, и является основным изоляционным слоем покрытия. Полимерная лента и защитная обертка повышают механические характеристики и ударную прочность покрытия, обеспечивают равномерное распределение изоляционного мастичного слоя по периметру и длине трубопровода.

Практическое применение комбинированных покрытий типа "Пластобит" подтвердило их достаточно высокие защитные и эксплуатационные характеристики. Данный тип покрытия в настоящее время наиболее часто применяют при проведении работ по ремонту и переизоляции действующих нефтепроводов, имеющих битумные покрытия. При этом в конструкции битумно-ленточного покрытия применяют преимущественно полиэтиленовые термоусаживающиеся ленты, обладающие повышенной теплостойкостью и высокими механическими характеристиками, а в качестве изоляционных мастик используют специальные модифицированные битумные мастики нового поколения.

Основные недостатки комбинированного мастично-ленточного покрытия те же, что и у битумно-мастичных покрытий - недостаточно широкий температурный диапазон применения (от минус 10 до плюс 40 °С) и недостаточно высокие физико-механические показатели свойств (ударная прочность, стойкость к продавливанию и др.).

Технология нанесения покрытий в трассовых условиях

Нанесение защитных битумно-мастичных и полимерных ленточных покрытий в трассовых условиях осуществляется после сварки труб и контроля сварных стыков. Для нанесения покрытий используются передвижные механизированные колонны, включающие: трубоукладчики и навесное технологическое оборудование (очистные и изоляционные машины, комбайны и т.д.), перемещающееся по сваренному в "нитку" трубопроводу и выполняющее операции по щеточной очистке, праймированию поверхности труб, нанесению на них защитного покрытия. При выполнении работ в зимнее время в состав оборудования дополнительно вводится передвижная печь для нагрева и сушки труб.

При нанесении битумных покрытий в составе механизированных колонн используются также битумно-плавильные котлы и специальные изоляционные машины. До нанесения покрытий производится очистка труб от грязи, ржавчины, рыхлой окалины. Для очистки поверхности труб применяются скребки, механические щетки и иглофрезы. Праймирование труб осуществляется посредством полива на поверхность труб дозированного количества адгезионного праймера с последующим его растиранием брезентовым полотенцем. На праймированные трубы с использованием изоляционной машины наносится слой горячей битумной мастики, после чего осуществляется нанесение на трубы армирующего материала (стеклохолст), второго слоя битумной мастики и слоя наружной защитной обертки. Ленточные покрытия наносятся на поверхность трубопроводов посредством спиральной намотки на праймированные трубы слоя изоляционной ленты и слоя защитной обертки, с заданным усилием натяжения и величиной нахлеста.

Практический опыт показал, что, несмотря на достаточно высокую степень механизации изоляционных работ в трассовых условиях, данный способ изоляции не обеспечивает качественного нанесения на трубы защитных покрытий. Это обусловлено влиянием погодных условий, отсутствием средств и методов пооперационного технологического контроля, а также недостаточно высокими механическими и защитными свойствами битумных и ленточных покрытий.

Перенос процесса наружной изоляции труб из трассовых условий в заводские или базовые условия не только позволил ускорить темпы строительства трубопроводов, но и в значительной степени повысить качество и надежность их противокоррозионной защиты. При заводской изоляции труб на качество работ не влияют погодные условия, проводится последовательный пооперационный технологический контроль. Кроме того, при изоляции труб в заводских условиях появляется возможность использовать современные изоляционные материалы и технологии их нанесения, которые невозможно реализовать при трассовой изоляции трубопроводов.

Заводские покрытия труб

Для наружной изоляции трубопроводов наиболее часто применяются следующие типы заводских покрытий:
а) заводское эпоксидное покрытие;
б) заводское полиэтиленовое покрытие;
в) заводское полипропиленовое покрытие;
г) заводское комбинированное ленточно-полиэтиленовое покрытие.

Данные типы покрытий отвечают современным техническим требованиям и обеспечивают долговременную, эффективную защиту трубопроводов от почвенной коррозии.

В разных странах отдается предпочтение различным типам заводских покрытий. В США, Англии, Канаде наиболее популярны эпоксидные покрытия труб, в Европе, Японии и России предпочтение отдается заводским покрытиям на основе экструдированного полиэтилена. Для изоляции морских трубопроводов и "горячих" (80-110 °С) участков трубопроводов применяются, как правило, полипропиленовые покрытия. Комбинированные ленточно-полиэтиленовые покрытия используются в основном для изоляции труб малых и средних диаметров с температурой эксплуатации до плюс 40 °С.

Заводское полиэтиленовое покрытие

Впервые однослойные полиэтиленовые покрытия труб на основе порошкового полиэтилена стали применяться в конце 50-х - начале 60-х гг. прошлого века. Технология нанесения однослойного полиэтиленового покрытия аналогична технологии нанесения покрытий из порошковых эпок-сидных красок. Из-за низкой водостойкости адгезии и стойкости к катодному отслаиванию однослойные полиэтиленовые покрытия не получили достаточно широкого применения. Им на смену пришли двухслойные покрытия с "мягким" адгезионным подслоем. В конструкции такого покрытия в качестве адгезионного слоя применялись изоляционные битумно-каучуковые мастики ("мягкие" адгезивы) толщиной 150-300 мкм, наносимые по слою праймера, а в качестве наружного ударопрочного слоя использовался экструдированный полиэтилен толщиной не менее 2,0-3,0 мм.

После того как фирмой "BASF" (Германия) был разработан сополимер этилена и эфира акриловой кислоты ("Lucalen"), который впервые был опробован в конструкции заводского полиэтиленового покрытия труб в качестве термоплавкого полимерного клеевого подслоя, в практику строительства трубопроводов было внедрено двухслойное полиэтиленовое покрытие с "жестким" адгезионным подслоем. Позднее был разработан еще целый ряд термоплавких клеевых композиций на основе сополимеров этилена и винилацетата, этилена и акрилата. Двухслойные полиэтиленовые покрытия получили очень широкое применение и на долгие годы стали основными заводскими покрытиями труб.

Конструктивно двухслойное полиэтиленовое покрытие состоит из адгезионного подслоя на основе термоплавкой полимерной композиции толщиной 250-400 мкм и наружного полиэтиленового слоя толщиной от 1,6 мм до 3,0 мм. В зависимости от диаметров труб общая толщина покрытия составляет не менее 2,0 (для труб диаметром до 273 мм включительно) и не менее 3,0 мм (для труб диаметром 1020 мм и выше).

Для нанесения двухслойных полиэтиленовых покрытий применяются как отечественные, так и импортные изоляционные материалы (термоплавкие композиции на основе сополимеров - для нанесения адгезионного слоя и композиции термосветостабилизированного полиэтилена - для нанесения наружного слоя). С целью повышения устойчивости двухслойных полиэтиленовых покрытий к воздействию воды и стойкости к катодному отслаиванию при повышенных температурах проводится обработка поверхности очищенных труб (пассивация) раствором хромата. При правильном подборе изоляционных материалов двухслойное полиэтиленовое покрытие обладает достаточно высокими показателями свойств и отвечает техническим требо-ваниям, предъявляемым к заводским покрытиям труб. Оно способно обеспечить защиту трубопроводов от коррозии на срок до 30 лет и выше.

Еще более эффективным наружным антикоррозионным покрытием является заводское трехслойное полиэтиленовое покрытие труб, конструкция которого отличается от двухслойного полиэтиленового покрытия наличием еще одного слоя - эпоксидного праймера. Эпоксидный слой обеспечивает повышенную адгезию покрытия к стали, водостойкость адгезии и стойкость покрытия к катодному отслаиванию. Полимерный адгезионный подслой является вторым, промежуточным слоем в конструкции трехслойного покрытия. Его функции состоят в обеспечении сцепления (адгезии) между полиэтиленовым наружным слоем и внутренним эпоксидным слоем. Наружная полиэтиленовая оболочка имеет низкую влагокислородопроницаемость, выполняет функции "диффузионного барьера" и обеспечивает покрытию высокую механическую и ударную прочность. Сочетание всех трех слоев покрытия делает трехслойное полиэтиленовое покрытие одним из наиболее эффективных наружных защитных покрытий трубопроводов.

Трехслойное покрытие было разработано в Германии и внедрено в практику строительства трубопроводов в начале 80-х гг. прошлого века, На сегодняшний день это покрытие является самым популярным и широко применяемым типом заводского покрытия труб.

В России технология заводской трехслойной полиэтиленовой изоляции труб впервые была внедрена в 1999 г. на ОАО "Волжский трубный завод". В 2000 г. были введены в эксплуатацию производства по трехслойной изоляции труб на ОАО "Челябинский трубопрокатный завод", ОАО "Выксунский металлургический завод", ГУП "Московский опытно-экспериментальный трубозаготовительный комбинат". К настоящему времени технология нанесения трехслойного полиэтиленового покрытия освоена также на предприятиях ЗАО "НЕГАС" (г. Пенза), ООО "Предприятие Трубопласт" (г. Екатеринбург), КЗИТ ООО "Завод изоляции труб" (г. Копейск Челябинской обл.), ООО "Усть-Лабинскгазстрой".

Трехслойное полиэтиленовое покрытие отвечает самым современным техническим требованиям и способно обеспечить эффективную защиту трубопроводов от коррозии на продолжительный период их эксплуатации (до 40-50 лет и более).

Для нанесения трехслойного полиэтиленового покрытия используют специально подобранные системы изоляционных материалов: порошковые эпоксидные краски, адгезионные полимерные композиции, композиции термосветостабилизированного полиэтилена низкой, высокой и средней плотности. В настоящее время при нанесении трехслойных полиэтиленовых покрытий на российских предприятиях применяются исключительно импортные изоляционные материалы: порошковые эпоксидные краски поставки фирм "3M" (США), "BASF Coatings" (Германия), "BS Coatings" (Франция), "DuPont" (Канада); композиции адгезива и полиэтилена поставки фирм "Borealis", "Basell Polyolefins" (Германия), "Atofina" (Франция) и др.

В ЗАО "АНКОРТ" проводятся работы по подбору, комплексным испытаниям и внедрению отечественных изоляционных материалов для трехслойных полиэтиленовых покрытий труб.

Заводское полипропиленовое покрытие

В Европе заводские покрытия труб на основе экструдированного полипропилена занимают 7-10 % от объема производства труб с заводским полиэтиленовым покрытием.

Полипропиленовое покрытие обладает повышенной теплостойкостью, высокой механической, ударной прочностью, стойкостью к продавливанию и абразивному износу.

Основная область применения полипропиленовых покрытий - противокоррозионная защита "горячих" (до 110-140 °С) участков трубопроводов, защита от коррозии морских, шельфовых трубопроводов, подводных переходов, участков трубопроводов, строящихся методами "закрытой" прокладки (проколы под дорогами, прокладка труб методом наклоннонаправленного бурения и т.д.).

Конструкция заводского полипропиленового покрытия аналогична конструкции заводского трехслойного полиэтиленового покрытия труб. Для нанесения покрытия используются порошковые эпоксидные краски, термоплавкие полимерные композиции и термосветостабилизированные композиции полипропилена. Из-за высокой ударной прочности полипропиленового покрытия его толщина может быть на 20-25 % меньше толщины поли-этиленового покрытия труб (от 1,8 мм до 2,5 мм).

Полипропиленовые покрытия имеют, как правило, белый цвет, что обусловлено использованием в качестве основного светостабилизатора добавки двуокиси титана.

К недостаткам полипропиленовых покрытий следует отнести их пониженную морозостойкость. Стандартное полипропиленовое покрытие рекомендуется применять при температурах строительства трубопроводов до минус 10 °С, а температура окружающей среды при хранении изолированных труб не должна быть ниже минус 20 °С. Специально разработанное морозо-стойкое полипропиленовое покрытие может применяться при температурах строительства трубопроводов до минус 30 °С и температурах хранения изолированных труб до минус 40 °С.

Для нанесения заводских полипропиленовых покрытий используются порошковые эпоксидные краски поставки фирм "3M" (США), "BASF Coatings" (Германия), композиции адгезива и полипропилена поставки фирм "Borealis", "Basell Polyolefins". Технология заводской изоляции труб с двухслойным и трехслойным полипропиленовыми покрытиями освоена на ГУП "Московский опытно-экспериментальный трубозаготовительный комбинат" и ОАО "Выксунский металлургический завод". В 2004 г. запланировано внедрение технологии нанесения заводского полипропиленового покрытия на оборудовании ОАО "Челябинский трубопрокатный завод" и ОАО "Волжский трубный завод".

Заводское комбинированное ленточно-полиэтиленовое покрытие

Для противокоррозионной защиты трубопроводов малых и средних диаметров (до 530 мм) в последние годы довольно широко и успешно используется комбинированное ленточно-полиэтиленовое покрытие. Комбинированное ленточно-полиэтиленовое покрытие наносится на трубы в заводских или базовых условиях. Конструктивно покрытие состоит из слоя адгезионной грунтовки (расход грунтовки - 80-100 г/м2), слоя дублированной полиэтиленовой ленты (толщина 0,45-0,63 мм) и наружного слоя на основе экструдированного полиэтилена (толщина от 1,5 мм до 2,5 мм). Общая толщина комбинированного ленточно-полиэтиленового покрытия составляет 2,2-3,0 мм.

В конструкции комбинированного покрытия полиэтиленовая лента, нанесенная по адгезионной грунтовке, выполняет основные изоляционные функции, а наружный полиэтиленовый слой защищает ленточное покрытие от механических повреждений при транспортировке, погрузке и разгрузке изолированных труб, при проведении строительно-монтажных работ.

В качестве изоляционных материалов для нанесения комбинированного покрытия могут использоваться адгезионные грунтовки и дублированные полиэтиленовые ленты поставки фирм "Polyken Pipeline Coating Systems" (США), "Altene" (Италия), "Nitto Denko Corporation" (Япония) или аналогичные отечественные материалы: грунтовки типа "НК-50", "П-001", изоляционные ленты "НК-ПЭЛ 45", "НК-ПЭЛ 63", "Полилен" производства ОАО "Трубоизоляция" (г. Новокуйбышевск Самарской обл.).

По показателям свойств комбинированное ленточно-полиэтиленовое покрытие уступает заводским двухслойным и трехслойным полиэтиленовым покрытиям труб, но в то же время в значительной степени превосходит битумно-мастичные и полимерные ленточные покрытия трубопроводов. Покрытие внесено в российский стандарт ГОСТ Р 51164-98. В настоящее время комбинированное ленточно-полиэтиленовое покрытие применяется преимущественно для наружной изоляции труб нефтегазопромыслового сортамента, а также при строительстве межпоселковых газопроводов низкого давления.

Технология нанесения защитных покрытий в заводских условиях

Нанесение наружных защитных покрытий на трубы в заводских условиях осуществляется с использованием оборудования поточных механизированных линий. В состав поточных линий изоляции труб входят: роликовые транспортные конвейеры, перекладчики труб, узлы очистки (дробеметная или дробеструйная установки), печи технологического нагрева труб (индук-ционные или газовые), узел напыления порошковой эпоксидной краски, экструдеры для нанесения адгезионного подслоя и наружного слоя покрытия, прикатывающие устройства, камеры водяного охлаждения изолированных труб, оборудование для контроля качества покрытия. Состав оборудования поточных линий изоляции труб зависит от типа заводского покрытия и диаметров изолируемых труб.

При нанесении наружных эпоксидных покрытий трубы, прошедшие абразивную очистку, нагреваются в проходной печи до температуры 200-240 °С, после чего на них в специальной камере, в электростатическом поле, производится напыление порошковой эпоксидной краски. При контакте с горячей поверхностью труб происходит оплавление и отверждение эпоксидной краски, формирование защитного покрытия.

Двухслойное и трехслойное полиэтиленовые покрытия могут наноситься на трубы двумя методами: методом "кольцевой" экструзии или методом боковой "плоскощелевой" экструзии расплавов композиций адгезива и полиэтилена. Для труб малых и средних диаметров более предпочтительным способом нанесения покрытий является метод "кольцевой" экструзии. При этом способе изоляции на предварительно очищенные и нагретые до заданной температуры (180-220 °С) трубы, поступающие по линии изоляции без вращения, через двойную кольцевую головку экструдера последовательно наносятся: расплав термоплавкой полимерной композиции (адгезионный подслой) и расплав полиэтилена (наружный защитный слой). Между кольцевой головкой экструдера и изолируемыми трубами создается пониженное давление ("вакуумирование"), в результате чего двухслойное покрытие плотно облегает поверхность изолируемых труб по всей их длине и периметру. При нанесении полиэтиленового покрытия по данной технологии обеспечивается наиболее высокая производительность процесса изоляции труб, которая может достигать 15-20 пог. м/мин.

При использовании метода боковой "плоскощелевой" экструзии двухслойное полиэтиленовое покрытие наносится на вращающиеся и поступательно перемещающиеся по линии трубы из двух экструдеров (экструдер по нанесению адгезива и экструдер по нанесению полиэтилена), оснащенных "плоскощелевыми" экструзионными головками. При этом расплавы клеевой и полиэтиленовой композиций в виде экструдированных лент наматываются по спирали на очищенные и нагретые до заданной температуры трубы с перехлестом в один (расплав адгезива) или в несколько (расплав полиэтилена) слоев. После нанесения на трубы покрытие прикатываются к поверхности труб специальными роликами. Изолированные трубы поступают в тоннель водяного охлаждения, где покрытие охлаждается до необходимой температуры, а затем трубы разгоняются по линии и с помощью перекладчиков подаются на стеллаж готовой продукции. При данном способе изоляции покрытие может наноситься на трубы диаметром от 57 до 1420 мм, а производительность процесса изоляции, как правило, не превышает 5-7 пог. м/мин.

Нанесение на трубы трехслойного полиэтиленового и трехслойного полипропиленового покрытий осуществляется по той же технологической схеме, что и нанесение двухслойного покрытия, за исключением введения в технологическую цепочку дополнительной операции - нанесения слоя эпоксидного праймера. Эпоксидный праймер толщиной 80-200 мкм наносится на очищенные и нагретые до необходимой температуры трубы методом напыления порошковой эпоксидной краски, после чего на праймированные трубы последовательно наносятся расплавы термоплавкой композиции адгезива и полиэтилена.

При нанесении на трубы комбинированного ленточно-полиэтиленового покрытия предварительно осуществляется щеточная очистка наружной поверхности труб. Технологический нагрев труб не производится. На очищенные трубы первоначально наносится битумно-полимерная грунтовка, а затем, после сушки грунтовки, осуществляется нанесение на праймированные трубы дублированной изоляционной ленты и наружного защитного слоя из экструдированного полиэтилена. Полиэтиленовый слой прикатывается к поверхности труб эластичным роликом, после чего изолириванные трубы охлаждаются в камере водяного охлаждения.

В зависимости от требований ГоСТ и обстоятельств современного рынка для обеспечения антикоррозийной защиты трубопроводов применяют нужные виды материалов и технологий.

В качестве ручного инструмента для обезжиривания небольших локальных участков используются ветошь и щетки, а также растворы, содержащие спирт, ацетон и другие растворяющие вещества. В промышленных условиях целесообразно использовать автоматизированные механизмы, подающие концентрированный щелочной раствор на стальную поверхность под давлением. Такой способ используется для очистки крупных жировых отложений. После обработки и выжидания действия состава на загрязненной площади, трубопровод обмывают чистой проточной водой до полного избавления от остатков мыла и щелочи. После процедуры, металлическую поверхность необходимо высушить и проинспектировать на наличие ворса или непромытых участков. Степень обезжиривания должна соответствовать 1-ой степени обезжиривания по ГОСТ 9.402-2004.

При абразивоструйной очистке на стальной поверхности создается шероховатость 50-110 мкм в зависимости от требований к подготовке поверхности для конкретного антикоррозионного изоляционного материала.

После завершения абразивоструйной очистки проводится обеспыливание. Обеспыливание поверхности трубопровода осуществляется методом обдува сжатым или с помощью .

Качество сжатого воздуха подчиняется требованиям ГОСТ 9.010-80. Воздух из сопла не должен содержать влаги, масел и прочих соединений, чтобы не испортить стальную или уже окрашенную поверхность. Использование кислоты или других ингибиторов после проведения абразивоструйной очистки ― не допускается.

Контроль качества параметров подготовки стальной поверхности осуществляется с помощью измерительных приборов и визуально:

  • степень очистка контролируется визуально по фотографическим эталонам в соответствие с ISO 8501-1;
  • степень обеспыливания методом тестирования наличия пыли липкой лентой по ISO 8502-3;
  • шероховатость измеряется электронным профилометром или компаратором путем сравнения с эталоном по ISO 8503-1;

Если чистка при помощи автоматических механизмов невозможна (труднодоступные места, высота и прочее) необходимо выполнение ручной работы. Для этого применяются щетки с проволочными щетинами или механические приспособления. Необходимо соблюдать осторожность в их использовании. Нельзя допустить образования дефектов, требующих повторной обработки трубопроводов ― заусенцы, царапины, излишняя шероховатость. Также запрещена полировка участков, что в будущем сможет негативно повлиять на адгезию металла с ЛКМ. Обработка поверхности обязательно должна идти с перекрытием соседних участков не менее чем на 25 мм при их наличии. Согласно ИСО 8501-1, степень очистки стальной поверхности должна соответствовать SаЗ.

Если присутствуют неокрашиваемые поверхности, их требуется защитить малярным скотчем, заклеив узлы на расстоянии не менее 10 мм от кромок. Максимальный отступ ― 100 мм.

2. .

Первый (грунтовый) слой наносится на стальную поверхность трубопроводов только после завершения всех очищающих процессов. Категорически не допускается применение ЛКМ на металле, где присутствуют очаги ржавчины, меления или любого другого вида загрязнения. Поверхность перед нанесением краски должна быть абсолютно сухой.

Толстослойные двухкомпонентные покрытия с толщиной сухой пленки от 1 до 3 мм наносятся с помощью специальных высокопроизводительных установок безвоздушного нанесения для высоковязких лакокрасочных материалов с раздельной подачей и подогревом.

Тонкослойные двухкомпонентные и однокомпонентные покрытия могут наноситься менее производительными установками для средневязких и низковязких материалов с раздельной или нераздельной подачей лакокрасочных материалов.

Лакокрасочные материалы перед нанесением проходят дополнительный входной контроль, после чего подготавливаются к работе в соответствие с технической документацией.

Покрытия наносятся на чистую и сухую поверхность преимущественно при температуре окружающей среды от +5°С и влажности не более 80%. Температура металла при нанесение должна быть не менее чем на 3°С выше точки росы.

Контрольные климатически параметры: температура воздуха, температура воздуха, влажность воздуха, температура точки росы и разница между температурой подложки и точкой росы; осуществляются во время всего процесса нанесения покрытий с помощью многофункциональных приборов измерения типа Elcometer 319.

Конечная толщина сухой пленки должна соответствовать спецификации и , предъявляемым к покрытиям.

Каждый последующий слой краски должен наносится на предыдущий при полном его высыхании. Соблюдение временных интервалов важно, так как халатность скажется на качестве общей работы. Если предыдущий слой контактировал с атмосферой не менее 30 суток, то, вполне возможно, что на поверхности образуются отложения солей, жира, влаги и грязи. Их немедленно устраняют путем промывки трубопровода чистой водой под давлением не менее 250―300 бар. Некоторые из дефектов не поддаются мойке, поэтому необходимо провести ряд мероприятий, по восстановлению целостности слоев. Это ― очистка от окалины или ржавчины, сглаживание гребней и вспучин, шлифовка и нанесение шероховатости.

Контроль над качеством работ по защите трубопроводов от коррозии осуществляется инспекторами по качеству. Они используют специальные приборы, а также проводят поверхности объекта.

Визуальный осмотр заключается в выявлении дефектов окрашенной поверхности трубопровода. Каждый слой контролируется требованиями ИСО 19840. Стандартом определяется толщина пленки, после ее окончательного отвердевания. Если места труднодоступны (конструктивные узлы, зоны), для них используются специальные приборы.

Визуальный осмотр необходим для установления наличия видимых дефектов покрытия. Специальные измерительные приборы исследуют:

  • Степень соединения поверхности и покрытия. С этой целью применяется адгезиметр.
  • Дефектоскоп показывает качество покрытия на счет сплошности.
  • Толщинометр определяет толщину сухой пленки покрытия.

Качество проводимых работ отображается в документах при сдаче-приеме объекта. Кроме того, к данному акту прилагаются:

Гарантия качества работы отличается от срока службы защитных составов и прописывается отдельным пунктом в договоре при участии двух сторон ― Исполнителя работ и Заказчика. Конкретные сроки службы систем ЛКМ (до 15 лет) должны обеспечить надежную защиту конструкциям из металла (в частности, трубопроводам) от коррозии и воздействия огня. Положение прописано в ИСО 12944-5.

Чтобы получить более детальную информацию, необходимо обратится по электронному адресу или телефонам компании «ВекФорт».

9248 0 5

Защита от коррозии стальных труб: 3 подарка от «старушки» химии

Металлические трубы обладают самыми высокими прочностными характеристиками, но над ними также властвует и невероятно разрушительное явление, называемое коррозией . Чрезмерная влажность способна уничтожить даже самую прочную сталь. В данной статье я расскажу вам о том, какие методы применял для защиты собственного железного трубопровода от столь пагубного эффекта, основываясь на знаниях по химии, полученных ещё в школе.

Общие положения

Коррозийные процессы представляют собой окисление металла, при котором его атомы меняют свободное состояние, теряя свои электроны, на ионное . Трубопровод, проложенный под землёй, подвергается двум видам коррозии, в природе которых стоит разобраться прежде, чем начинать с ними бороться. Поэтому я уделю немного внимания их описанию:

Почвенная

Как вы уже наверняка догадались из названия и прилагающейся схемы, почвенная коррозия возникает из-за контакта стали с грунтом. В свою очередь она делится на следующие подвиды:

  • Химическая . Появляется в результате воздействия на железо газов и неэлектролитов жидкого типа. Примечательно, что при ней материал разрушается равномерно, и образование сквозных отверстий практически невозможно, что делает такой тип коррозийного процесса наименее опасным для проложенной под землёй магистрали;
  • Электрохимическая . Металл выступает электродом, а грунтовые воды, коих в нашем климатическом поясе невероятно много, электролитом. Происходящий процесс очень схож с работой гальванической пары и провоцирует разрушение точечных участков на поверхности труб, что в итоге приводит к их аварийному состоянию;

  • Электрическая . Возникает вследствие воздействия на сталь блуждающих токов, которые могут «стекать» с рельс, подстанций и иных электрифицированных приборов, заполняющих современные города. Является наиболее опасным и разрушительным коррозийным процессом.

Внутренняя коррозия

Если транспортируемая жидкость обладает низким водородным показателем, а вот содержание кислорода, сульфатов и хлоридов у неё, наоборот, высокое, то не избежать также и внутренних коррозийных процессов, в результате которых:

  • Увеличивается уровень шероховатости внутренней поверхности стенки, что приводит к снижению проходимости воды;

  • Ухудшается качество транспортируемой жидкости , так как в неё попадает ржавчина;
  • Со временем может появиться сквозное отверстие , способное стать причиной разрыва трубопровода.

Химия на страже

Защита трубопроводов от коррозии по СНиП включает в себя множество различных комплексных мер, но я хочу привести некоторые конкретные методы, которые нам так благосклонно «дарит» великая наука, и которые мне удалось применить на практике:

Подарок №1: внешняя изоляция

Выше мы разобрались, что большинство бед происходят из-за химических реакций, протекающих в результате долговременного контакта металла с землёй. Следовательно, наиболее простой и верный шаг – это полностью исключить его. Тем более что в таком случае одновременно легко выполняется и защита труб от замерзания, то есть, «убиваем двух зайцев одним выстрелом».

Я опишу вам вариант, которым воспользовался сам, а также альтернативные способы изоляции прокладываемого трубопровода:

  1. Нефтяной битум . Именно этот материал был взят мной за основу при реализации защиты металла от появления ржавчины в условиях подземной эксплуатации. Его цена колеблется в районе 18-22 рублей за один кг, что вполне благосклонно к семейному бюджету. Рабочий процесс:
    • Первым делом я до блеска зачистил поверхность трубопровода стальной щёткой;

    • Затем я развёл часть купленного битума с бензином для получения битумной грунтовки в следующих пропорциях:

    • Тщательно обработал полученным раствором металлическую поверхность водопроводной магистрали;
    • Далее на огне приготовил битумную мастику с добавлением из измельчённого асбеста для усиления прочностных характеристик будущей изоляции. Цемент и каолин также подойдут для этой цели;

    • Нанёс первый слой горячей смеси, после чего обмотал трубопровод гидроизолом . Я использовал модель с такими характеристиками:

    • Потом ещё два раза повторил процедуру. Для вашего же региона может понадобиться меньше или, наоборот, больше слоёв битума с гидроизолом в зависимости от коррозийной активности грунта, на которую влияют его уровень влажности, химический состав, кислотность и структура;

  1. Полиэтилен . Тут стоит отметить две абсолютно разные ситуации:
    • Первая включает в себя собственноручное исполнение задуманного. Такой метод можно назвать наиболее простым в реализации, так как вам достаточно будет просто обмотать трубу в несколько слоёв полиэтиленовым полотном и зафиксировать его монтажным скотчем. Но сам по себе данный материал обладает низкими прочностными характеристиками, поэтому применять его для защиты длинных участков магистрали я бы поостерегся;
    • Во второй же речь идёт уже о заводском нанесении усиленного экструдированного полиэтилена. То есть вы покупаете металлические трубы, имеющие специальный защитный слой. Конечно же, такие изделия будут стоить дороже, но от коррозии они дадут вполне эффективную протекцию;

  1. Пенополиуретан . Здесь также можно пойти двумя дорогами, но в любом случае стоит сразу отметить очень высокие теплоизоляционные качества готовой антикоррозийной защиты:
    • Использовать специальные пенополиуретановые скорлупы . Они представляют собой две половинки цилиндра, которые надеваются с двух сторон на трубопровод и стыкуются друг с другом, создавая соединение;

    • Впрыскивание жидкого ППУ между телом трубы и предварительно установленной оболочкой из экструдированного полиэтилена или иного подходящего изоляционного материала. После застывания вещества швы полностью отсутствуют, что, конечно же, значительно улучшает качество изоляции, хотя сам процесс и более трудоёмок в своей реализации.

Вышеизложенными вариантами внешняя изоляция не ограничивается, тут можно применить ещё множество влагостойких материалов, способных принять цилиндрическую форму. Поэтому в любом случае ориентируйтесь также по актуальным предложениям расположенного поблизости от вас специализированного магазина.

Подарок №2: внутренняя изоляция

Как я уже выше отметил, транспортируемая по трубам жидкость может также провоцировать возникновение коррозийных процессов, и тут дела обстоят несколько сложнее. Дело в том, что без специального оборудования в домашних условиях качественную внутреннюю изоляцию совершить невозможно. Остаётся тогда лишь заказывать соответствующие услуги у специалистов или сразу покупать уже защищённые изделия.

Наиболее распространённым вариантом на сегодняшний день является нанесение цементно-песчаной смеси на внутренние стенки трубопровода с последующим её обжимом при помощи специального протаскиваемого прибора. В результате получается гладкое неподверженное коррозийным процессам покрытие.

Когда я заказывал данный вид услуг, то мне предложили следующие расценки:

Примечательно, что инструкция позволяет обработку, как новых металлических труб, так и старых.

Помимо цемента также может быть использован нефтяной битум . В этом случае изделия, обладающие большим сечением, окунают в жидкий раствор, а стыки затем обрабатываю вручную. А образцы с маленьким диаметром покрывают уже после осуществления сварочных работ, пропустив по ним смесь с полым медным цилиндром под воздействием постоянного электрического тока. За счёт воздействия электричества битумные частицы плотно пристают к железу, создавая тонкую надёжную плёнку.

Подарок №3: активная изоляция

Сюда относятся электрические методы защиты, которые у меня вполне получалось реализовать самостоятельно. Вот их описание:

  1. Катодная защита :
    • Накладываем отрицательный потенциал на трубопровод, переводя его в катодную зону;
    • Рядом с трубами закапываем железные трубы , куски рельс или иные изделия из чёрного металла, которые примут на себя роль анода;

    • Источник с отрицательным постоянным током подключаем к трубопроводу;
    • Источник с положительным постоянным током подключаем к рельсе или иному изделию, которое вы применили в качестве анода;
    • Так образуется замкнутый контур электрического тока , который протекает от положительного полюса к анодному заземлению, растекается по грунту, попадает на трубу и затем к отрицательному полюсу;

    • Так как из рельсы ток выходит в образе положительных ионов металла, то постепенно разрушается именно она, а не труба . Вот вам и химия;
  1. Протекторная защита. Реализуется гораздо проще, так как не нуждается в постороннем источнике электропитания . Именно данный вариант предпочитаю использовать я:
    • Помещаем рядом с водопроводом стержень из металла, обладающего отрицательным химическим потенциалом , который превышает аналогичный показатель у стали. Это может быть изделие из цинка, магния или алюминия;
    • Подсоединяем его к защищаемой конструкции с помощью ;

    • Весь удар придётся на анод-протектор, исключая коррозию трубы;
    • После того, как стержень из цинка или магния будет окончательно разрушен, его необходимо заменить;
  1. Дренаж. С помощью него осуществляется защита трубопроводов от блуждающих токов:
    • Соединяем кабелем трубу с ближайшим электрифицированным источником , по которому попавшие на неё токи возвращаются обратно;
    • Ионы металла перестают уходить в почву, за счёт чего останавливаются коррозийные процессы.

Таким образом, все активные методы защиты сводятся к тому, чтобы исключить потерю ионов металла за счёт «жертвы» или избавления от блуждающих токов.

Рекомендую использовать комплексный подход к гидроизоляции вашего трубопровода. То есть, сочетать внешнюю, внутреннюю и активную защиту.
Это даст наиболее эффективный результат, позволив продлить эксплуатационный срок магистрали на десятки лет.

Заключение

При осуществлении монтажа водопровода на собственном загородном участке я заказал обработку его внутренних стенок цементно-песчаной смесью , затем самостоятельно снаружи покрыл его битумной изоляцией и для большей уверенности закопал рядом подсоединённую кабелем болванку из магния . У меня нет теперь причин сомневаться в долговечности созданной конструкции, так как имеющиеся знания по химии гарантируют отсутствие коррозийных процессов с учётом всех проделанных мер предосторожности.

Видео в этой статье содержит некоторое количество дополнительной информации, имеющей непосредственное отношение к изложенной теме.

Если у вас после прочтения материала, возникли какие-либо вопросы, то можете задать их в комментариях.

25 июля 2016г.

Если вы хотите выразить благодарность, добавить уточнение или возражение, что-то спросить у автора - добавьте комментарий или скажите спасибо!

Металлические трубопроводы в естественных условиях подвержены комплексу негативных факторов, снижающих их качество и срок службы. Прогрессивная защита трубопроводов от коррозии позволяет нивелировать разрушение и продлить срок эксплуатации.

Рассмотрим способы борьбы с «гниением» металла, типы используемых материалов и нормативные требования к такой защите.

Проблема коррозии

Окисление (коррозия) металла – это образование из его свободных атомов химических и ионных связей. Сопровождается переходом электронов таких атомов в состав окислителей.

Окисление выводит трубы из строя и ведет убыткам

Процесс происходит на внешних и внутренних поверхностях из-за воздействия внешних агрессоров и особенностей транспортируемого сырья. Комплексные меры предотвращают материальные и экономические убытки, связанные с преждевременным износом конструкций, вынужденными ремонтами, утечками транспортируемых продуктов.

Окисление делится на типы:

  • поверхностное;
  • местное;
  • щелевое;
  • язвенное;
  • межкристаллитное;
  • «усталостное» растрескивание.

Потребность в антикоррозионной защите трубопроводов возникает по ряду причин, связанных с климатом, состоянием грунта, условиями использования:

  • влажность воздуха и земли;
  • химический состав земли и воздуха (соли, органика, щелочи и кислоты);
  • кислотность;
  • структура грунта;
  • термические нагрузки (внутренние и внешние);
  • вредоносная микрофауна и микрофлора;
  • блуждающие токи.

Эти факторы приводят к образованию сквозных свищей и язв на металлических поверхностях, выводя трубопроводы из строя.

Способы антикоррозийной защиты

Выделяется 4 типа антикоррозийной защиты трубопроводов:

  1. Изоляция (предотвращение контакта с агрессивными средами).
  2. Применение при изготовлении конструкций стойких к окислению материалов.
  3. Снижение агрессивности внешних факторов.
  4. Электрозащита подземных сооружений из металлов.

Изоляция

Изоляция – пассивный способ, предполагающий нанесение защитных покрытий, особые технологии прокладки трубопроводов, обработку специальными растворами.

Изоляция – радикальный пассивный способ предотвратить коррозию

В качестве покрытий применяют инертные к металлу и внешней среде мастики, краски, эмали, пластмассовые соединения и лаки, другие металлы с меньшей подверженностью коррозии (цинк, хром, никель). Образующаяся в результате пленка предотвращает разрушение провода.

Применяется термостабилизированный, порошковый полиэтилен, стеклоткань, поливинилхлорид, битумные покрытия. Сварные стыки и соединения изолируют с помощью термоусадочных манжет, муфт, полимерных лент с липким покрытием. Также используются краски и мастики (эпоксидные или порошковые), каменноугольные и битумные составы.

Стыки изолируются с помощью термоусадочных фитингов (манжеты, ленты и муфты)

В промзонах и на городских территориях монтеры по защите подземных трубопроводов от коррозии используют коллекторный способ прокладки (конструкции размещаются в каналах, за счет воздушной подушки между поверхностями окисление не происходит).

Растворы, образующие на стенках металла пленку малорастворимых солей, — оксид алюминия для алюминиевых изделий, фосфатирование для стальных конструкций. Иногда для перехода металлической поверхности в пассивное состояние используют растворы пассиваторов (смеси, снижающие интенсивность перехода ионов металла в раствор). Пассиваторы снижают скорость коррозионного разрушения.

Пассивация трубопроводов препятствует окислению за счет непроницаемой пленки изолирующего раствора

Трубопроводы из устойчивых к коррозии материалов

Способ заключается во введении в состав металла веществ, увеличивающих сопротивляемость труб окислению, или устранению вредных добавок, ускоряющих этот процесс. Такая защита трубопроводов инженерных систем от коррозии проводится на этапе их изготовления, при термической и химической обработке изделий.

Введение в состав труб более прочных металлов сократит расходы на дополнительную изоляцию

Суть: легирование не склонного к пассивации металла аналогичным металлом с высокими показателями пассивации в заданных условиях. В результате сплав получает характеристики легирующего компонента. Применяют нержавеющую сталь с вкраплениями никеля и хрома, сплавы алюминия и титана, добавки бетона, керамических составов, асбоцемента, стекла.

Минус способа – дороговизна.

Снижение агрессивности условий эксплуатации

Третий вариант – противокоррозионная защита трубопроводов, направленная на улучшение внешних условий. Возможные решения:

  1. Дезактивация окислительных процессов – введение ингибиторов и удаление вредоносных компонентов из среды (осушка и очистка воздуха от примесей, деаэрация растворов).
  2. Обработка ядами и активными химикатами для избавления от микрофлоры и микрофауны, деятельность которых приводит к биокоррозии.
  3. Гидрофобизация, деаэрация грунта (в случае, если конструкция находится под землей), нейтрализация щелочными и кислотными составами, введение в почву спец. примесей.

Микроорганизмы наряду с влагой и активными токами приводят к окислению

Электрозащита

Алгоритмы активной борьбы с окислением:

  • протекторная защита от коррозии трубопроводов (покрытие конструкции металлами с отрицательным электродным потенциалом, например, магнием);
  • статичная или периодическая катодная поляризация конструкций в электропроводной среде для изменения их термодинамических характеристик;
  • электродренаж (предупреждение появления блуждающих токов и отвод имеющихся блуждающих токов).

Протекторные работы позволят поверхности конструкции активно сопротивляться окислению

Требования к защитным мерам по СНиП

Согласно СНиП, антикоррозийная защита трубопроводов должна соответствовать ряду нормативов:

  1. Меры, направленные на предотвращение коррозии конструкций, должны гарантировать их безаварийное функционирование в течение заявленных производителем сроков.
  2. Подземные сооружения требуют комплексных мер (использования покрытий и электрохимических средств).
  3. Интенсивность протекции определяется степенью агрессивности условий эксплуатации сооружения (нормальная или усиленная).
  4. Защита от коррозии трубопроводов проводится по ГОСТ 25812 – 83.

Требования к применяемым материалам

Условия использования металлических конструкций многообразны, потому промышленный рынок предлагает множество покрытий. Материалы отличаются способами нанесения, химическими и механическими характеристиками.

Наличие выбора позволяет решить проблему окисления независимо от условий эксплуатации. Но защита от коррозии трубопроводов, согласно СНиП, может проводиться только с применением материалов, обладающих нормативными свойствами:

  • цельность покрытия (отсутствие пор и электролитических ячеек);
  • водонепроницаемость – препятствование контакту металла с электролитом через влагу;
  • электрохимическая нейтральность – состав не должен в ступать в катодные реакции;
  • высокая адгезия для предотвращения расслаивания изоляции и попадания электролитов на рабочую поверхность;
  • устойчивость к химикатам;
  • устойчивость к механическим нагрузкам в процессе эксплуатации конструкции;
  • сопротивляемость токам;
  • термостойкость (для объектов, эксплуатируемых при предельных для используемого металла и изоляционного покрытия температурах; если транспортируемые вещества перегоняются при высокой температуре или изоляция проводится в холодное время года);
  • химическая и коррозийная нейтральность по отношению к рабочей конструкции.

Также материалы для защиты трубопроводов от коррозии не могут быть дефицитными, преимущество – возможность автоматизации нанесения покрытия в полевых и заводских условиях, экономичность.

Всем перечисленным требованиям не соответствует ни один из известных изолирующих материалов, потому выбор покрытия зависит от условий строительства, использования трубопровода, сырьевой, экономической и технологической базы.

Коррозия – неизбежный, естественный процесс. Сохранить работоспособность трубопроводной системы может только своевременная грамотная защита.

Видео: антикоррозийная защита трубопроводов

Поделиться: