Что такое митохондрии? Их строение и функции.

Строение. Поверхностный аппарат митохондрий состоит из двух мембран - наружной и внутренней. Внешняя мембрана гладкая, она отделяет митохондрию от гиалоплазмы. Под ней находится складчатая внутренняя мембрана, которая образует кристи (гребни). С обеих сторон крист обнаружены мелкие грибовидные тельца, называемые оксисомамы, или АТФ-сомами. Они содержат ферменты, участвующие в окислительном фосфорилирования (присоединении фосфатных остатков к АДФ с образованием АТФ). Количество крист в митохондриях связана с энергетическими потребностями клетки, в частности в мышечных клетках митохондрии содержат очень большое количество крист. При повышенной функции клетки митохондрии приобретают более овальной или удлиненной формы, и количество крист у них растет.

Митохондрии имеют собственный геном, их рибосомы типа 70S отличаются от рибосом цитоплазмы. ДНК митохондрий преимущественно имеет циклическую форму (плазмиды), кодирует все три вида собственных РНК и поставляет информацию для синтеза части митохондриальных белков (около 9%). Итак, митохондрии можно считать полуавтономными органелл. Митохондрии относятся к саморепликуючих (способных к размножению) органелл. Обновления митохондрий происходит в течение всего клеточного цикла. Например, в клетках печени они заменяются новыми спустя почти 10 дней. Наиболее вероятным путем воспроизведения митохондрий считают их разделение: посередине митохондрии появляется перетяжка или возникает перегородка, после чего органеллы распадаются на две новые митохондрии. Образуются митохондрии с промитохондрий - округлых телец диаметром до 50 нм с двойной мембраной.

Функции . Митохондрии участвуют в энергетических процессах клетки, они содержат ферменты, связанные с образованием энергии и клеточным дыханием. Иными словами, митохондрия является своеобразной биохимической мини-фабрикой, которая превращает энергию органических соединений на прикладное энергию АТФ. В митохондриях энергетический процесс начинается в матриксе, где происходит расщепление пировиноградной кислоты в цикле Кребса. Во время этого процесса освобождаются атомы водорода, которые транспортируются дыхательным цепью. Энергия, которая при этом высвобождается, используется в нескольких участках дыхательной цепи для осуществления реакции фосфорилирования - синтеза АТФ, то есть присоединения фосфатной группы к АДФ. Это происходит на внутренней мембране митохондрий. Итак, энергетическая функция митохондрий интегрируется с: а) окисления органических соединений, что происходит в матриксе, благодаря чему митохондрии называют дыхательным центром клеток, б) синтеза АТФ, осуществляется на кристах, благодаря чему митохондрии называют энергетическими станциями клеток. Кроме того, митохондрии берут участие в регуляции обмена воды, депонировании ионов кальция, продукции предшественников стероидных гормонов, в обмене веществ (например, митохондрии в клетках печени содержат ферменты, которые позволяют им обезвреживать аммиак) и другие.

БИОЛОГИЯ + Митохондриальные болезни - группа наследственных заболеваний, связанных с дефектами митохондрий, которые приводят к нарушению клеточного дыхания. Они передаются по женской линии детям обоего пола, поскольку яйцеклетка имеет больший объем цитоплазмы и, соответственно, передает потомкам и большее количество митохондрий. Митохондриальная ДНК, в отличие от ядерной, не защищена белками-гистонами, а механизмы репарации, которые достались от бактерий-предков, несовершенны. Поэтому в митохондриальной ДНК мутации накапливаются у 10-20 раз быстрее, чем в ядерной, что и приводит к митохондриальных болезней. В современной медицине их сейчас известно уже около 50. Например, синдром хронической усталости, мигрень, синдром Барта, синдром Пирсона и многие другие.


Основной функцией митохондрий является синтез АТФ - универсальной формы химической энергии в любой живой клетке. Как иг у прокариот, данная молекула может образовываться двумя путями: в результате гликолизе) или в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента (англ.)русск. протонов (ионов водорода). Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент AjiH+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В основе всех мембран клетки лежит двойной слой молекул липидов. Их гидрофобные «хвосты», состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. В состав мембран чаще всего входят фосфолипиды и гликолипиды (их молекулы наиболее полярны), а также жиры и жироподобные вещества (например, холестерин). Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хлоропластов, их функции, расположение их в органах

Пластиды - органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНКВ целом организмы можно разделить на две группы: на организмы, клетки которых содержат настоящие клеточные ядра, и организмы, которые этим свойством не обладают. Первые называются эукариотами, вторые - прокариотами. К прокариотам относятся бактерии и сине-зеленые водоросли. Эукариоты объединяют все остальные одно- и многоклеточные живые существа. В противоположность прокариотам, кроме обладания клеточными ядрами, эти существа отличаются выраженной способностью к образованию органоидов. Органоиды - это разделенные мембранами составные части клеток. Так, самыми большими клеточными органоидами (по крайней мере, различимыми в световой микроскоп), которыми обладают эукариоты, являются митохондрии, а растительные организмы обладают еще и пластидами. Митохондрии и пластиды большей частью отделены от цитоплазмы клетки двумя мембранами. (Некоторые подробности строения. Митохондрии часто называют "силовыми станциями" эукариотических клеток, так как они играют большую роль в образовании и превращении энергии в клетке. Пластиды для растений не менее важны: хлоропласта, которые являют собой основной тип пластид, заключают в себе механизм фотосинтеза, который осуществляет превращение солнечного Света в химическую энергию.

У различных групп организмов хлоропласты значительно различаются по размерам, строению и количеству в клетке. Особенности строения хлоропластов имеют большое таксономическое значение

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение

воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.

2. Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение хромопластов, их функции, расположение их в органах

Хромопласт (окрашенные пласты) - окрашенные незелёные тела, заключающиеся в телах высших растений, в отличие от зелёных тел (хлоропластов).

Хромопласты содержат лишь жёлтые, оранжевые и красноватые пигменты из ряда каротинов (см. хлорофилл). Чисто-красные, синие и фиолетовые пигменты (антоциан) и некаротинного характера - жёлтые (антохлор) у высших растений растворены в клеточном соке. Форма хромопластов разнообразна: они бывают круглые, многоугольные, палочковидные, веретенообразные, серповидные, трёхрогие и т. - д. Хромопласты происходят большей частью из хлоропластов (хлорофилльных зёрен), которые теряют хлорофилл и крахмал, что заметно в лепестках, в ткани плодов и т. д. Развитие каротина в хлоропласте понятно из того, что первый в них содержится вместе с хлорофиллом. Так же как и у хлоропластов, у хромопластов пигмент образует в протоплазматической, бесцветной основе лишь отдельные включения, причём иногда в виде настоящих кристаллов, игольчатых, волосовидных, прямых или изогнутых и т. д.

Функция хлоропластов: фотосинтез. Полагают, что хлороплас"гы произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Пластиды. Гипотезы их возникновения в растительной клетке. Субмикроскопическое строение лейкопластов, их функции, расположение их в органах

Лейкопласты - бесцветные сферические пластиды в клетках растений.

Лейкопласты образуются в запасающих тканях (клубнях, корневищах), клетках эпидермы и других частях растений. Синтезируют и накапливают крахмал (так называемые амилопласты), жиры, белки. Лейкопласты содержат ферменты, с помощью которых из глюкозы, образованной в процессе фотосинтеза, синтезируется крахмал. На свету лейкопласты превращаются в хлоропласты.

Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы TOS-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты - лейкопласты, которые синтезируют и накапливают крахмал, элайопласты - масла, протеинопласты

белки. В одном и том же лейкопласте могут накапливаться разные вещества.

II. Митохондрии (строение и функции)

Полисомы. Синтез цитоплазматических белков

Рибосомы представляют собой мельчайшие органеллы, присутствующие в цитоплазме клетки. Несмотря на свои размеры, они являются сложными молекулярными ансамб­леями, состоящими из рибосомальной РНК (р-РНК) различной длины и рибосомальных белков . В цитоплазме рибосомы встречаются в виде 2-х форм:

1. В диссоциированном состоянии (две субъединицы: малая и большая), которое свидетельствует об их неактивном статусе;

2. В ассоциированном виде – это форма их активного статуса.

Большая субъединица образуется тремя молекулами РНК, имеет форму полушара с 3 выступами, взаимодействующие с «шипиками» малой субъединицы.

Малая субъединица содержит лишь одну молекулу РНК и выглядит в виде «шапочки» с шипиками, обращёнными в сторону большой субъединицы. Ассоциация субъединиц рибосомы – это взаимодействие рельефов их поверхностей.

Функции субъединиц:

1. Малая ответственна за связывание с матричной РНК;

2. Большая – за образование полипептидной цепи.

Полисомы – это группа рибосом (от 5 до 30) связанных нитью м-РНК с образованием функционального комплекса. На нём происходит синтез цитоплазматических белков, необходимых клетке для роста, развития органелл дифференцировки.

Этапы синтеза цитоплазматических белков:

1. Выход из ядра м-РНК;

2. Сборка рибосом;

3. Образование функциональной полисомы;

4. Синтез сигнального пептида;

5. Считывание последовательности аминокислот в составе пептида сигнал-распознающей частицы (СРЧ);

6. Завершение синтеза цитоплазматического белка на полисоме. См рис. 1

Рис. 1: Схема синтеза цитоплазматических белков

II. Митохондрии (строение и функции)

Митохондрии – это система энергообеспечения клетки. На светооптическом уровне их выявляют при окраске по Альтману, они выглядят в виде зёрнышек и нитей. В цитоплазме они распределены диффузно, а в специализированных клетках сосредоточенны в участках, где имеется наибольшая потребность в энергии.

Электронномикроскопический уровень организации митохондрии : в ней выделяют две мембраны: наружную и внутреннюю. См. рис. 2

Рис. 2: Схема строения митохондрии

Наружная мембрана – это мешок с относительно ровной поверхностью, она по химическому составу и свойствам близка к плазмолемме, отличается она более высокой проницаемостью и содержит ферменты метаболизма жирных кислот, фосфолипидов и липидов.

Функция:

1. Отграничение митохондрии в гиалоплазме;

2. Транспорт в митохондрию субстратов для клеточного дыхания.

Внутренняя мембрана – неровная, она формирует кристы в виде пластин (ламеллярные кристы) с увеличением площади её поверхности. Главным компонентом этой мембраны являются молекулы белков, относящиеся к ферментам дыхательной цепи, цитохромы.

На поверхности крист в некоторых клетках описывают грибовидные частицы (F 1 -частицы), в которых различают головку (9 нм) и ножку (3 нм). Считают, что именно здесь происходит синтез АТФ и АДФ.

Между наружной и внутренней мембранами образуется небольшое (около 15 – 20 нм) пространство, которое называют наружной камерой митохондрий. Внутренняя камера ограничена соответственно внутренней митохондриальной мембраной и содержит матрикс.

Матрикс митохондрий имеет гелеобразную фазу и отличается высоким содержанием белка. В нём встречаются митохондриальные гранулы – частицы диаметром 20 – 50 нм высокой электронной плотности, они содержат ионы Са 2+ и Mg 2+ . Матрикс митохондрий содержит также митохондриальные ДНК и рибосомы. На первых происходит синтез транспортных белков митохондриальных мембран и некоторых белков, участвующих в фосфолировании АДФ. ДНК здесь состоит из 37 генов и не содержит некодирующие последовательность нуклеотидов.

Функции митохондрий:

1. Обеспечение клетки энергией в виде АТФ;

2. Участие в синтезе стероидных гормонов;

3. Участие в синтезе нуклеиновых кислот;

4. Депонирование кальция.

МИТОХОНДРИИ (mitochondria ; греч, mitos нить + chondrion зернышко) - органоиды, присутствующие в цитоплазме клеток животных и растительных организмов. М. принимают участие в процессах дыхания и окислительного фосфорилирования, продуцируют энергию, необходимую для функционирования клетки, представляя, таким образом, ее «силовые станции».

Термин «митохондрии» был предложен в 1894 г. Бендой (С. Benda). В середине 30-х гг. 20 в. удалось впервые выделить М. из клеток печени, что позволило исследовать эти структуры биохим, методами. В 1948 г. Хогебумом (G. Hogeboom) были получены окончательные доказательства того, что М. действительно являются центрами клеточного дыхания. Значительные успехи в изучении этих органоидов были сделаны в 60-70 гг. в связи с применением методов электронной микроскопии и молекулярной биологии.

Форма М. варьирует от почти круглых до сильно вытянутых, имеющих вид нитей (рис. 1), Размер их колеблется от 0,1 до 7 мкм. Количество М. в клетке зависит от типа ткани и функционального состояния организма. Так, в сперматозоидах число М. невелико - ок. 20 (на клетку), в клетках эпителия почечных канальцев млекопитающих их содержится до 300 в каждой, а у гигантской амебы (Chaos chaos) обнаружено 500 000 митохондрий, В одной клетке печени крысы ок. 3000 М., однако в процессе голодания животного число М. может сократиться до 700. Обычно М. распределяются в цитоплазме достаточно равномерно, однако в клетках нек-рых тканей М. могут быть постоянно локализованы в участках, особенно нуждающихся в энергии. Напр., в скелетной мышце М. часто находятся в контакте с контрактильными участками миофибрилл, образуя правильные трехмерные структуры. В сперматозоидах М. образуют спиральный футляр вокруг осевой нити хвоста, что, вероятно, связано с возможностью использовать энергию АТФ, синтезируемую в М., для движений хвоста. В аксонах М. концентрируются вблизи синаптических окончаний, где происходит процесс передачи нервных импульсов, сопровождающийся энергозатратой. В клетках эпителия почечных канальцев М. связаны с выпячиваниями базальной клеточной мембраны. Это вызвано необходимостью постоянного и интенсивного снабжения энергией процесса активного переноса воды и растворенных в ней веществ, протекающего в почках.

Электронно-микроскопически установлено, что М. содержит две мембраны - наружную и внутреннюю. Толщина каждой мембраны ок. 6 нм, расстояние между ними - 6-8 нм. Наружная мембрана гладкая, внутренняя образует сложные выросты (кристы), вдающиеся в полость митохондрии (рис. 2). Внутреннее пространство М. носит название матрикса. Мембраны представляют собой пленку из компактно уложенных молекул белков и липидов, в то время как матрикс подобен гелю и содержит в своем составе растворимые белки, фосфаты и другие хим. соединения. Обычно матрикс выглядит гомогенным, лишь в нек-рых случаях в нем можно обнаружить тонкие нити, трубочки и гранулы, содержащие ионы кальция и магния.

Из особенностей строения внутренней мембраны необходимо отметить наличие в ней сферических частиц ок. 8-10 нм в поперечнике, сидящих на короткой ножке и иногда выступающих в матрикс. Эти частицы были открыты в 1962 г. Фернандес-Мораном (H. Fernandez-Moran). Они состоят из белка, обладающего АТФ-азной активностью, получившего обозначение F1. Белок прикрепляется к внутренней мембране только со стороны, обращенной к матриксу. Частицы F1 располагаются на расстоянии 10 нм друг от друга, а в каждой М. содержится 10 4 -10 5 , таких частиц.

В кристах и внутренних мембранах М. содержится большинство дыхательных ферментов (см.), дыхательные ферменты организованы в компактные ансамбли, распределенные с правильными промежутками в кристах М. на расстоянии 20 нм друг от друга.

М. почти всех типов клеток животных и растений построены по единому принципу, однако возможны отклонения в деталях. Так, кристы могут располагаться не только поперек длинной оси органоида, но и продольно, напр, в М. синаптической зоны аксона. В ряде случаев кристы могут ветвиться. В М. простейших организмов, нек-рых насекомых и в клетках клубочковой зоны надпочечников кристы имеют форму трубочек. Число крист различно; так, в М. клеток печени и половых клеток крист очень мало и они короткие, в то время как матрикс обилен; в М. мышечных клеток кристы многочисленны, а матрикса мало. Существует мнение, что число крист коррелирует с окислительной активностью М.

Во внутренней мембране М. осуществляются параллельно три процесса: окисление субстрата цикла Кребса (см. Трикарбоновых кислот цикл), перенос освободившихся при этом электронов и накопление энергии путем образования макроэргических связей аденозинтрифосфата (см. Аденозинфосфорные кислоты). Основной функцией М. является сопряжение синтеза АТФ (из АДФ и неорганического фосфора) и аэробного процесса окисления (см. Окисление биологическое). Накопленная в молекулах АТФ энергия может трансформироваться в механическую (в мышцах), электрическую (нервная система), осмотическую (почки) и т. д. Процессы аэробного дыхания (см. Окисление биологическое) и сопряженного с ним окислительного фосфорилирования (см.) являются основными функциями М. Кроме того, в наружной мембране М. может происходить окисление жирных к-т, фосфолипидов и нек-рых других соединений.

В 1963 г. Насс и Насс (М. Nass, S. Nass) установили, что в М. содержится ДНК (одна или несколько молекул). Все исследованные до сих пор митохондриальные ДНК из животных клеток состоят из ковалентно замкнутых колец диам. ок. 5 нм. У растений митохондриальная ДНК значительно длиннее и не всегда имеет форму кольца. Митохондриальная ДНК во многих отношениях отличается от ядерной. Репликация ДНК происходит при помощи обычного механизма, однако не совпадает во времени с репликацией ядерной ДНК. Количество генетической информации, заключенной в молекуле митохондриальной ДНК, по-видимому, недостаточно для кодирования всех белков и ферментов, содержащихся в М. Митохондриальные гены кодируют в основном структурные белки мембран и белки, участвующие в морфогенезе митохондрий. М. имеют свои транспортные РНК и синтетазы, содержат все компоненты, необходимые для синтеза белка; их рибосомы меньше цитоплазматических и более похожи на рибосомы бактерий.

Продолжительность жизни М. сравнительно невелика. Так, время обновления половины количества М. составляет для печени 9,6-10,2 сут., для почки - 12,4 сут. Пополнение популяции М. происходит, как правило, из предсуществующих (материнских) М. путем их деления или почкования.

Давно высказывалось предположение, что в процессе эволюции М. возникли, вероятно, путем эндосимбиоза примитивных ядросодержащих клеток с бактериоподобными организмами. Имеется большое число доказательств этому: наличие собственной ДНК, более сходной с ДНК бактерий, чем с ДНК ядра клетки; присутствие в М. рибосом; синтез ДНК-зависимой РНК; чувствительность митохондриальных белков к антибактериальному препарату - хлорамфениколу; сходство с бактериями в реализации дыхательной цепи; морфол., биохим, и физиол, различия между внутренней и наружной мембраной. Согласно симбиотической теории клетка-хозяин рассматривается как анаэробный организм, источником энергии для к-рого является гликолиз (протекающий в цитоплазме). В «симбионте» же реализуется цикл Кребса и дыхательная цепь; он способен к дыханию и окислительному фосфорилированию (см.).

М. являются весьма лабильными внутриклеточными органоидами, раньше других реагирующими на возникновение каких-либо патол, состояний. Возможны изменения числа М. в клетке (вернее, в их популяциях) или изменения их структуры. Напр., при голодании, действии ионизирующего облучения число М. уменьшается. Структурные изменения обычно состоят в набухании всего органоида, просветлении матрикса, разрушении крист, нарушении целостности наружной мембраны.

Набухание сопровождается значительным изменением объема М. В частности, при ишемии миокарда объем М. увеличивается в 10 раз и более. Различают два типа набухания: в одном случае оно связано с изменением осмотического давления внутри клетки, в других случаях - с изменениями клеточного дыхания, сопряженного с ферментативными реакциями и первичными функциональными расстройствами, вызывающими изменения водного обмена. Помимо набухания, может происходить вакуолизация М.

Независимо от причин, вызывающих патол, состояние (гипоксия, гиперфункция, интоксикация), изменения М. довольно стереотипны и неспецифичны.

Наблюдаются такие изменения структуры и функции М., к-рые, по-видимому, становились причиной возникновения болезни. В 1962 г. Луфт (R. Luft) описал случай «митохондриальной болезни». Больному с резко повышенной интенсивностью обмена веществ (при нормальной функции щитовидной железы) была сделана пункция скелетной мышцы и найдено повышенное число М., а также нарушение структуры крист. Дефектные митохондрии в клетках печени наблюдались и при выраженном тиреотоксикозе. Виноград (J. Vinograd) с сотр. (с 1937 по 1969) обнаружил, что у больных с определенными формами лейкемии митохондриальные ДНК из лейкоцитов заметно отличались от нормальных. Они представляли собой открытые кольца или группы сцепленных колец. Частота этих аномальных форм снижалась в результате химиотерапии.

Библиография: Гаузе Г. Г. Митохондриальная ДНК, М., 1977,библиогр.; Д e P о-бертис Э., Новинский В. и С а э с Ф. Биология клетки, пер. с англ., М., 1973; Озернюк Н. Д. Рост и воспроизведение митохондрий, М., 1978, библиогр.; Поликар А. и Бесси М. Элементы патологии клетки, пер. с франц., М., 1970; РудинД. и Уилки Д. Биогенез митохондрий, пер. с англ., М., 1970, библиогр.; Серов В. В. и Пауков В. С. Ультраструктурная патология, М., 1975; С э д ж e р Р. Цитоплазматические гены и органеллы, пер. с англ., М., 1975.

Т. А. Залетаева.

Митохондрии — одни из самых важных составляющих любой клетки. Их еще называют хондриосомами. Это грануловидные или нитевидные органеллы, которые являются составляющей частью цитоплазмы растений и животных. Именно они являются производителями молекул АТФ, которые так необходимы для многих процессов в клетке.

Что такое митохондрии?

Митохондрии - это энергетическая база клеток, их деятельность основана на окислении и применении энергии, освободившейся при распаде молекул АТФ. Биологи на простом языке его называют станцией вырабатывания энергии для клеток.

В 1850 г. митохондрии выявили в виде гранул в мышцах. Их число менялось в зависимости от условий роста: они скапливаются больше в тех клетках, где большой дефицит кислорода. Это происходит чаще всего при физических нагрузках. В таких тканях появляется острая нехватка энергии, которую восполняют митохондрии.

Появление термина и место в теории симбиогенеза

В 1897 г. Бенд впервые ввел понятие «митохондрия», чтобы обозначить зернистую и нитчатую структуру в По форме и величине они разнообразны: толщина составляет 0,6 мкм, длина - от 1 до 11 мкм. В редких ситуациях митохондрии могут быть большого размера и разветвленным узлом.

В теории симбиогенеза дается четкое представление о том, что такое митохондрии и как они появились в клетках. В ней говорится, что хондриосома возникла в процессе поражения клетками бактерий, прокариотами. Так как они не могли автономно применять кислород для выработки энергии, это препятствовало полному их развитию, а прогеноты могли развиваться беспрепятственно. В течение эволюции связь между ними дала возможность прогенотам передать свои гены теперь уже эукариотам. Благодаря такому прогрессу митохондрии теперь не являются независимыми организмами. Их генофонд не может быть реализован в полной мере, так как происходит его частичная блокировка ферментами, которые есть в любой клетке.

Где они живут?

Митохондрии сосредотачиваются в тех районах цитоплазмы, где появляется необходимость в АТФ. Например, в мышечной ткани сердца они располагаются неподалеку от миофибрилл, а в сперматозоидах формируют защитную маскировку вокруг оси жгута. Там они вырабатывают очень много энергии для того, чтобы "хвост" крутился. Именно таким образом сперматозоид двигается к яйцеклетке.

В клетках новые митохондрии образуются с помощью простого деления предыдущих органелл. Во время него сохраняется вся наследственная информация.

Митохондрии: как они выглядят

По форме митохондрии напоминает цилиндр. Они часто встречаются в эукариотах, занимая от 10 до 21 % объема клетки. Их размеры и формы во многом разнятся и способны меняться в зависимости от условий, но ширина постоянна: 0,5-1 мкм. Перемещения хондриосом зависят от того, в каких местах клетки совершается быстрая трата энергии. Передвигаются по цитоплазме, применяя для передвижения структуры цитоскелета.

Заменой разных по габаритам митохондрий, работающих отдельно друг от друга и снабжающих энергией некоторые зоны цитоплазмы, являются длинные и разветвленные митохондрии. Они способны обеспечить энергией участки клеток, находящиеся далеко друг от друга. Подобная совместная работа хондриосом наблюдается не только у одноклеточных организмов, но и у многоклеточных. Самое сложное строение хондриосом встречается в мышцах скелета млекопитающих, где самые большие разветвленные хондриосомы стыкуются друг с другом, используя межмитохондриальные контакты (ММК).

Они представляют собой узкие просветы между прилегающими друг к другу митохондриальными мембранами. Данное пространство обладает высокой электронной плотностью. ММК больше встречаются в клетках где связываются вместе с работающими хондриосомами.

Чтобы лучше разобраться в вопросе, нужно кратко расписать значимость митохондрии, строение и функции этих удивительных органелл.

Как они устроены?

Для понимания, что такое митохондрии, необходимо узнать их строение. Этот необычный источник энергии имеет форму шара, но чаще вытянут. Две мембраны располагаются близко друг к другу:

  • наружная (гладкая);
  • внутренняя, которая образует выросты листовидной (кристы) и трубчатой (тубулы) формы.

Если не принимать во внимание размер и форму митохондрии, строение и функции у них одинаковые. Хондриосома разграничена двумя мембранами, размером 6 нм. Наружная мембрана митохондрии напоминает емкость, которая ограждает их от гиалоплазмы. Внутреннюю мембрану от внешней отъединяет участок шириной 11-19 нм. Отличающей чертой внутренней мембраны считается ее способность выпячиваться внутрь митохондрии, принимая форму сплющенных гребней.

Внутреннюю полость митохондрии заполняет матрикс, который имеет мелкозернистую структуру, где иногда обнаруживают нити и гранулы (15-20 нм). Нити матрикса создают органеллы, а гранулы небольших размеров - рибосомы митохондрии.

На первой стадии проходит в гиалоплазме. На данной ступени идет начальное окисление субстратов или глюкозы до Данные процедуры проходят без кислорода - анаэробное окисление. Следующая стадия образования энергии заключается в аэробном окислении и распада АТФ, данный процесс происходит в митохондриях клеток.

Что делают митохондрии?

Основными функциями этой органеллы являются:


Наличие в митохондриях своей дезоксирибонуклеиновой кислоты еще раз подтверждает симбиотическую теорию появления этих органелл. Также, помимо основной работы, они участвуют в синтезе гормонов и аминокислот.

Митохондриальная патология

Мутации, происходящие в геноме митохондрии, приводят к удручающим последствиям. Носителем человека является ДНК, которая передается потомкам от родителей, а митохондриальный геном передается только от матери. Объясняется данный факт очень просто: цитоплазму с заключенными в ней хондриосомами дети получают вместе с женской яйцеклеткой, в сперматозоидах они отсутствуют. Женщины с данным отклонением могут передать потомству митохондриальное заболевание, больной мужчина - нет.

В обычных условиях хондриосомы располагают одинаковой копией ДНК - гомоплазмия. В геноме митохондрии могут происходить мутации, вследствие совместного существования здоровых и мутированных клеток возникает гетероплазмия.

Благодаря современной медицине на сегодняшний день выявлены более 200 заболеваний, поводом возникновения чего послужила мутация митохондрии ДНК. Не во всех случаях, но терапевтическому поддержанию и лечению митохондриальные болезни поддаются хорошо.

Вот мы и разобрались с вопросом о том, что такое митохондрии. Как и все остальные органеллы, они очень важны для клетки. Они косвенно принимают участие во всех процессах, для которых нужна энергия.

Поделиться: