Углерод — характеристика элемента и химические свойства. Получение окиси углерода

СО угарный газ СО 2 углекислый газ
Получение
СО 2 + С → 2СО (при нагревании) 2С + О 2 (недостаток) → 2СО СаСО 3 → СаО + СО 2 (860 о С) СаСО 3 + 2НСl → CaCl 2 + H 2 O + CO 2 CH 4 + 2O 2 → CO 2 + 2H 2 O С + О 2 (избыток) → СО 2
Физические свойства
Газ без цвета и запаха, немного легче воздуха, мало растворим в воде. Газ без цвета и запаха, тяжелее воздуха, умеренно растворим в воде, в твердом состоянии способен к возгонке («сухой лед»).
СО СО 2
Строение молекулы
С ≡ О (σ + 2π): вторая π-связь образуется за счет передачи неподеленной электронной пары кислорода на свободную орбиталь атома углерода. Линейная полярная молекула, способна к донорно-акцепторному взаимодействию: Ni + 5CO → Ni(CO) 5 – пентакарбонил никеля О = С = О две двойных связи (σ + π), линейная неполярная симметричная молекула
Физиологическое действие
Ядовит, так как является гемблокатором: Hb + CO → Hb . CO – карбоксигемоглобин, в 210 раз прочнее оксигемоглобина Hb . O 2 . Участвует в акте вдоха, так как активирует дыхательный центр мозга.
Место в классификации оксидов
Несолеобразующий оксид Исключение: СО + NaOH → HCOONa расплав формиат натрия Кислотный оксид СО 2 + Са(ОН) 2 → СаСО 3 ↓ + Н 2 О СаСО 3 + Н 2 О + СО 2 → Са(НСО 3) 2 – качественная реакция на СО 2: с известковой водой образуется белый осадок, растворяющийся в избытке газа. СО 2 + Н 2 О → Н 2 СО 3 СО 2 + Na 2 O → Na 2 CO 3 CO 2 + Na 2 SiO 3 + H 2 O → Na 2 CO 3 + H 2 SiO 3 ↓
Окислительно-восстановительная активность
Сильный восстановитель CuO + CO → Cu + CO 2 CO + Cl 2 → COCl 2 (фосген) Слабый окислитель 2Mg + CO 2 → 2MgO + C

Угольная кислота Н 3 СО 3 – слабая, двухосновная, неустойчивая.

СО 2 + Н 2 О ↔ Н 2 СО 3 ↔ Н + + НСО 3 - ↔ 2Н + + СО 3 2-

Образует 2 ряда солей: средние карбонаты (Na 2 CО 3) и кислые гидрокарбонаты (NaHCO 3)

Качественная реакция на соли угольной кислоты : под действием сильных кислот выделяют газ без цвета и запаха:

Na 2 CO 3 + 2НCl → 2NaCl + СO 2 + Н 2 O

NaHCO 3 + НCl → NaCl + CO 2 + Н 2 O

CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O

Взаимный переход карбонатов и гидрокарбонатов :

Na 2 CO 3 + СO 2 + H 2 O → 2NаНСО 3

NaHCO 3 + NaOH → Na 2 CO 3 + H 2 O или 2NaHCO 3 (t 0) → Na 2 CO 3 + CO 2 + H 2 O

Общесолевые свойства карбонатов:



Na 2 CO 3 + Ca(OH) 2 → 2NaOH + СаСО 3 ↓

Na 2 CO 3 + CaCl 2 → 2NaCl + CaCO 3 ↓

Растворимые карбонаты гидролизуются но аниону :

СO 3 2- + НОН ↔ НСO 3 - + ОН -

Na 2 CO 3 + Н 2 O ↔ NaHCO 3 + NaOH

Применение углерода и его соединений:

СO 2 применяется в качестве «сухого льда», содержится в природных минеральных водах. СО и кокс (С) – металлургические восстановители. Активированный уголь применяется в противогазах и бытовых фильтрах для воды, в медицине для выведения токсинов из организма, в качестве катализатора адсорбционного действия. Уголь используется в качестве топлива.

Na 2 CO 3 . 10Н 2 O – кальцинированная сода.

NаНСО 3 – пищевая сода.

(NH 4) 2 CO 3 – основа разрыхлителя теста.

СОСl 2 – фосген – боевое отравляющее вещество.

К 2 СO 3 – поташ – калийное удобрение.

СаСО 3 – мел, мрамор, известняк.

Положение в ПСХЭ : Z = 14, 3 период, IV группа (главная).

Электронная формула : 1s 2 2s 2 2р 6 3s 2 Зр 2

Шкала степеней окисления : +4: SiО 2 , Н 2 SiO 3 , Na 2 SiО 3

– 4: Mg 2 Si, SiH 4

Нахождение в природе: второй после кислорода элемент земной коры: SiO 2 – кварц, песок, горный хрусталь; силикаты и алюмосиликаты(глины, каолин, слюда, полевой шпат). Диатомовые водоросли и кремниевые губки накапливают кремний.

Получение : при нагревании

1) SiО 2 (кремнозем) + 2Mg → 2MgO + Si

2) SiО 2 + С → Si + CО 2

3) 3SiO 2 + 4Al → 2Al 2 O 3 + 3Si

4) SiCl 4 + 2Zn → 2ZnCl 2 + Si

Образуется аморфный кремний – бурый порошок. При его перекристаллизации (испарение действием высокой температуры с последующей конденсацией) образуется кристаллический кремний – серые кристаллы с металлическим блеском и полупроводниковыми свойствами.

Химические свойства :

1) Восстановительные (преобладают):

Si + 2F 2 → SiF 4 (фторид кремния (IV)) – при комнатной температуре, на свету

Si + O 2 → SiO 2 (оксид кремния (IV)) – 600 о С

3Si + 2N 2 → Si 3 N 4 (нитрид кремния (IV)) – 1000 о С

Si + С → SiС (карбид кремния (карборунд)) – сплавление 2000 о С

Si + 2S → SiS 2 (сульфид кремния) – 600 o C

Si + 2Cl 2 → SiCl 4 (хлорид кремния) – 400 о С

Si + 2Н 2 О (пар) → SiО 2 + 2Н 2

Si + 2NaOH + H 2 О → Na 2 SiО 3 + 2H 2

3Si + 4HNО 3 + 18HF → 3H 2 SiF 6 + 4NO + 8H 2 О (гексафторокремниевая кислота)

С азотной и концентрированной серной кислотами и водородом кремний не реагирует .

2) Окислительные свойства кремний проявляет только в реакциях с металлами:

2Mg + Si → Mg 2 Si (силицид магния)

Соединения кремния

Силан SiH 4 – бесцветный ядовитый газ, самовоспламеняется на воздухе; имеет нейтральный характер.

Mg 2 Si + 4НСl → 2MgCl 2 + SiH 4 (c водой реакция идет трудно, так как образуется нерастворимый Mg(OH) 2)

SiH 4 + 2O 2 → SiO 2 + 2H 2 O

Оксид кремния (IV) SiO 2

Кремниевая кислота H 2 SiO 3 : нерастворима (стекловидный осадок), самая слабая из минеральных кислот.

Получение :

Na 2 SiO 3 + 2НСl → 2NaCl + H 2 SiO 3 ↓

SiCl 4 + 3H 2 O → H 2 SiO 3 ↓ + 4HCl

SiS 2 + 3H 2 O → H 2 SiO 3 ↓ + 2H 2 S

Химические свойства:

1) Растворяется в щелочах: H 2 SiО 3 + 2NaOH → Na 2 SiО 3 + 2H 2 О

2) Разлагается при нагревании: H 2 SiО 3 → H 2 О + SiО 2

Силикаты : растворимы только у щелочных металлов.

Общесолевые свойства:

Na 2 SiO 3 + ВаСl 2 → 2NaCl + BaSiO 3 ↓

Na 2 SiO 3 + Са(ОН) 2 → CaSiO 3 + 2NaOH

Растворы силикатов имеют щелочную среду вследствие гидролиза:

Na 2 SiO 3 + НОН ↔ NaHSiO 3 + NaOH

Применение кремния и его соединений :

Карборунд применяется в стоматологии для шлифовки пломб. SiO 2 (кварц) – в оптических и хронометрических приборах. Na 2 SiO 3 – основа канцелярского клея и стекла. Соединения кремния – основа керамической и цементной промышленности.

Окись углерода, или угарный газ (CO) - газ без цвета, запаха и вкуса. Горит синим пламенем, как водород. Из-за этого в 1776 году химики перепутали его с водородом, когда впервые получили угарный газ путем нагревания оксида цинка с углеродом. Молекула этого газа имеет сильную тройную связь, подобно молекуле азота. Вот почему обнаруживается некоторое сходство между ними: температуры плавления и кипения практически одинаковы. Молекула окиси углерода обладает высоким значением потенциала ионизации.

Окисляясь, угарный газ образует углекислый газ. При этой реакции выделяется большое количество тепловой энергии. Вот почему окись углерода применяется в отопительных системах.

Угарный газ при низких температурах почти не вступает в реакции с другими веществами, в случае высоких температур дело обстоит иначе. Очень быстро проходят реакции присоединения различных органических веществ. Смесь CO и кислорода в определенных соотношениях весьма опасна из-за возможности ее взрыва.

Получение окиси углерода

В лабораторных условиях окись углерода получают путем разложения . Оно происходит под влиянием горячей концентрированной серной кислоты, либо при пропускании ее через оксид фосфора. Еще один способ заключается в том, что смесь муравьиной и щавелевой кислот нагревают до определенной температуры. Выделяющийся CO можно удалить из этой смеси, пропустив ее через баритовую воду (насыщенный раствор ).

Опасность угарного газа

Угарный газ чрезвычайно опасен для человека. Он вызывает сильное отравление, нередко может стать причиной смерти. Все дело в том, что окись углерода обладает способностью реагировать с гемоглобином крови, выполняющим перенос кислорода всем клеткам тела. В результате такой реакции образуется карбогемоглобин. Из-за недостатка кислорода клетки испытывают голодание.

Можно выделить следующие симптомы отравления: тошнота, рвота, головная боль, потеря цветоощущения, расстройство дыхания и другие. Человеку, отравившемуся угарным газом, необходимо как можно скорее оказать первую помощь. Сначала его нужно вытащить на свежий воздух и приставить к носу ватку, смоченную в нашатырном спирте. Далее растереть грудь пострадавшего и приложить к его ногам грелки. Рекомендуется обильное теплое питье. Нужно сразу же после обнаружения симптомов вызвать врача.

Известны два оксида углерода: СО и СO 2 .

Оксид углерода (II) СО (угарный газ). В молекуле этого окси­да атом углерода находится в невозбужденном состоянии. За счет двух р-электронов он образует две связи с атомом кислорода. Тре­тья связь образуется по донорно-акцепторному механизму, при­чем кислород является донором электронной пары, которую атом углерода акцептирует на свободную 2р-орбиталь.

Оксид углерода (II) СО образуется в процессе сгорания угля при недостатке кислорода. В промышленности его получают про­пусканием углекислого газа над раскаленным углем:

СО 2 +С=2СО

В лабораторных условиях СО получают действием концент­рированной серной кислоты на муравьиную кислоту при нагревании (H 2 SO 4 отнимает воду):

НСООН®H 2 O+CO­

Оксид углерода (II) СО - бесцветный газ, без запаха. Очень

к мало растворим в воде. Ядовит. Допустимое содержание СО в

производственных помещениях составляет 0,03 мг в 1 л воздуха. В количествах, опасных для жизни, он содержится в выхлопных газах автомобилей. Отравляющее действие состоит в

том, что он необратимо взаимодействует с гемоглобином крови,

вследствие чего прекращается перенос кислорода от легких к

В химическом отношении СО - инертное соединение (при низкой температуре). При повышении температуры до 200°С и давлении 15 10 5 Па оксид углерода (II) реагирует с NaOH, обра­зуя натриевую соль муравьиной кислоты:

Окисление до СO 2 происходит при температуре 700°С: 2СО+О 2 =2CO 2 ­

При взаимодействии с парами воды образуется СO 2 и Н 2: СО+Н 2 O®CO 2 ­+ H 2 ­

СО - энергичный восстановитель. Он восстанавливает мно­гие металлы из их оксидов, что используется в металлургии при получении металлов из руд:

Fe 2 O 3 +3CO=2Fe+3CO 2 ­

В присутствии катализаторов (платины или активированного угля) или под действием прямого солнечного света угарный газ со­единяется с хлором, образуя чрезвычайно ядовитый газ - фосген:

СО+Сl 2 ®СОСl 2

Уникальной является способность оксида углерода (II) при повышенных температурах и давлениях образовывать с некото­рыми металлами необычные (комплексные) соединения, назы­ваемые карбонилами:

При обычных условиях жидкостями являются карбонилы Ni(CO) 4 , Fe(CO) 5 , Ru(CO) 5 , Os(CO) 5 . Все остальные представляют собой кристаллические вещества. Карбонилы металлов диамаг­нитны, что указывает на наличие спаренных электронов. Все они отличаются высокой устойчивостью по отношению к различным химическим реагентам. Относительная независимость в трактов­ке поведения s- и p-электронов позволяет понять особенность электронной структуры карбонильных комплексов. Если металл, соединяясь с лигандом, обнаруживает невысокие значения ва­лентности, то в s-связях заряд переносится от лиганда к металлу, а в p-связях, наоборот, от металла к лиганду. В результате атом металла переходит в состояние близкое к нейтральному. Именно так ведет себя молекула СО, выполняющая роль акцептора в p- связях.

При нагревании карбонилы металлов разлагаются на СО и ме­талл, что используется для получения металлов высокой чистоты.

Оксид углерода (IV) СО 2 (углекислый газ) образуется в при­роде при горении и гниении органических веществ. Содержится в воздухе (объемная доля 0,03%), а также во многих минеральных источниках (нарзан, боржоми). Выделяется при дыхании живот­ных и растений.

В лаборатории его можно получить действием разбавленных кислот на карбонаты:

СаСО 3 +2НСl=СаСl 2 +CO 2 ­+Н 2 О

В промышленности получают при обжиге известняка:

СаСO 3 =СаО+CO 2 ­

Структурная формула молекулы СО 2: О=С=О. Она имеет ли­нейную форму. Связь углерода с кислородом полярная. Однако благодаря симметричному расположению связей сама молекула СО 2 неполярна.

При обычных условиях СО 2 - бесцветный газ, в 1,5 раза тяже­лее воздуха. Растворим в воде (при 0°С 1,7 л СО 2 в 1 л Н 2 О). Не поддерживает горения и дыхания, но служит источником питания зеленых растений. При сильном охлаждении СO 2 кристаллизуется в виде белой снегообразной массы, которая в спрессованном состоянии испаряется очень медленно, понижая температуру окружающей среды. Этим объясняется ее применение в качестве «сухого льда».

Углерод образует два чрезвычайно устойчивых оксида (СО и СO 2), три значительно менее устойчивых оксида (С 3 O 2 , С 5 O 2 и С 12 O 9), ряд неустойчивых или плохо изученных оксидов (С 2 O, С 2 O 3 и др.) и нестехиометрический оксид графита. Среди перечисленных оксидов особую роль играют СО и СO 2 .

ОПРЕДЕЛЕНИЕ

Монооксид углерода при обычных условиях горючий газ без цвета и запаха.

Он довольно токсичен из-за его способности образовывать комплекс с гемоглобином, который примерно в 300 раз устойчивее, чем комплекс кислород-гемоглобин.

ОПРЕДЕЛЕНИЕ

Диоксид углерода при обычных условиях - бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в другой.

Масса 1 л CO 2 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика: 1 объем воды при 20 o С растворяет 0,88 объема CO 2 , а при 0 o С - 1,7 объема.

Прямое окисление углерода при недостатке кислорода или воздуха приводит к образованию СО, при достаточном их количестве образуется СO 2 . Некоторые свойства этих оксидов представлены в табл. 1.

Таблица 1. Физические свойства оксидов углерода.

Получение оксида углерода

Чистый СО может быть получен в лаборатории дегидратированием муравьиной кислоты (НСООН)концентрированной серной кислотой при ~140 °С:

HCOOH = CO + H 2 O.

В небольших количествах диоксид углерода можно легко получить действием кислот на карбонаты:

CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .

В промышленном масштабе CO 2 получают главным образом как побочный продукт в процессе синтеза аммиака:

CH 4 + 2H 2 O = CO 2 + 4H 2 ;

CO + H 2 O = CO 2 + H 2 .

Большие количества углекислого газа получают при обжиге известняка:

CaCO 3 = CaO + CO 2 .

Химические свойства оксида углерода

Монооксид углерода химически активен при высоких температурах. Он проявляет себя как сильный восстановитель. Реагирует с кислородом, хлором, серой, аммиаком, щелочами, металлами.

CO + NaOH = Na(HCOO) (t = 120 - 130 o C, p);

CO + H 2 = CH 4 + H 2 O (t = 150 — 200 o C, kat. Ni);

CO + 2H 2 = CH 3 OH (t = 250 — 300 o C, kat. CuO/Cr 2 O 3);

2CO + O 2 = 2CO 2 (kat. MnO 2 /CuO);

CO + Cl 2 = CCl 2 O(t = 125 — 150 o C, kat. C);

4CO + Ni = (t = 50 — 100 o C);

5CO + Fe = (t = 100 — 200 o C, p).

Диоксид углерода проявляет кислотные свойства: реагирует со щелочами, гидратом аммиака. Восстанавливается активными металлами, водородом, углеродом.

CO 2 + NaOH dilute = NaHCO 3 ;

CO 2 + 2NaOH conc = Na 2 CO 3 + H 2 O;

CO 2 + Ba(OH) 2 = BaCO 3 + H 2 O;

CO 2 + BaCO 3 + H 2 O = Ba(HCO 3) 2 ;

CO 2 + NH 3 ×H 2 O = NH 4 HCO 3 ;

CO 2 + 4H 2 = CH 4 + 2H 2 O (t = 200 o C, kat. Cu 2 O);

CO 2 + C = 2CO (t > 1000 o C);

CO 2 + 2Mg = C + 2MgO;

2CO 2 + 5Ca = CaC 2 + 4CaO (t = 500 o C);

2CO 2 + 2Na 2 O 2 = 2Na 2 CO 3 + O 2 .

Применение оксида углерода

Монооксид углерода широко используется как топливо в виде генераторного газа или водяного газа и образуется также привыделении многих металлов из их оксидов восстановлением углем. Генераторный газ получают, пропуская воздух черезраскаленный уголь. В его состав входит около 25% СО, 4% СO2 и 70% N 2 со следами Н 2 и СН 4 62.

Применение диоксида углерода чаще всего обусловлено его физическими свойствами. Его используют как охлаждающий агент, для газирования напитков, при получении облегченных(вспененных) пластмасс, а также как газ для создания инертной атмосферы.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Определите во сколько раз тяжелее воздуха оксид углерода (IV)CO 2 .
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (CO 2) = M r (CO 2) / M r (air);

D air (CO 2) = 44 / 29 = 1,517.

M r (CO 2) = A r (C) + 2×A r (O) = 12 + 2× 16 = 12 + 32= 44.

Ответ Оксид углерода (IV)CO 2 тяжелее воздуха в 1,517 раз.

Все, что нас окружает, состоит из соединений различных химических элементов. Мы дышим не просто воздухом, а сложным органическим соединением, имеющим в своем составе кислород, азот, водород, двуокись углерода и другие необходимые составляющие. Влияние множества этих элементов на организм человека в частности и на жизнь на Земле в целом еще не изучено до конца. Для того чтобы понимать процессы взаимодействия элементов, газов, солей и других образований друг с другом, в школьный курс и был введен предмет «Химия». 8 класс - это старт уроков химии по утвержденной общеобразовательной программе.

Одним из самых распространенных соединений, содержащихся как в земной коре, так и в атмосфере, является оксид. Оксидом называется соединение любого химического элемента с атомом кислорода. Даже источник всего живого на Земле - вода, является оксидом водорода. Но в данной статье речь пойдет не об оксидах в общем, а об одном из самых часто встречаемых соединений - оксиде углерода. Данные соединения получаются путем слияния атомов кислорода и углерода. Эти соединения могут иметь в своем составе различные количества атомов углерода и кислорода, однако следует выделить два основных соединения углерода с кислородом: угарный газ и углекислый газ.

Химическая формула и способ получения угарного газа

Какова же его формула? Оксид углерода довольно легко запомнить - CO. Молекула угарного газа образуется тройной связью, в связи с чем обладает довольно высокой прочностью соединения и имеет очень небольшое межъядерное расстояние (0,1128 нм). Энергия разрыва данного химического соединения составляет 1076 кДж/Моль. Тройная связь возникает вследствие того, что элемент углерод имеет в своей структуре атома p-орбиталь, не занятую электронами. Это обстоятельство создает для атома углерода возможность стать акцептором электронной пары. А атом кислорода, наоборот, имеет на одной из p-орбиталей неразделенную пару электронов, а значит имеет электронно-донорные возможности. При соединении этих двух атомов кроме двух ковалентных связей появляется еще и третья - донорно-акцепторная ковалентная связь.

Существуют различные способы получения CO. Одним из самых простейших является пропускание углекислого газа над раскаленным углем. В лабораторных условиях угарный газ получают при помощи следующей реакции: муравьиную кислоту нагревают с серной кислотой, которая разделяет муравьиную кислоту на воду и угарный газ.

Также CO выделяется при нагревании щавелевой и серной кислоты.

Физические свойства CO

Оксид углерода (2) обладает следующими физическими свойствами - это бесцветный газ, не имеющий ярко выраженного запаха. Все посторонние запахи, появляющиеся при утечке угарного газа, являются продуктами распада органических примесей. Он намного легче воздуха, чрезвычайно токсичен, очень плохо растворяется в воде и отличается высокой степенью горючести.

Самое главное свойство CO - его отрицательное воздействие на организм человека. Отравление угарным газом может привести к летальному исходу. Более подробно о воздействии оксида углерода на организм человека будет рассказано ниже.

Химические свойства CO

Основные химические реакции, в которых могут применяться оксиды углерода (2) - это окислительно-восстановительная реакция, а также реакция присоединения. Окислительно-восстановительная реакция выражается в способности CO восстанавливать металл из оксидов при помощи их смешивания с дальнейшим нагреванием.

При взаимодействии с кислородом происходит образование углекислого газа с выделением значительного количества теплоты. Угарный газ горит синеватым пламенем. Очень важная функция оксида углерода - его взаимодействие с металлами. В результате подобных реакций образуются карбонилы металлов, подавляющее большинство которых являются кристаллическими веществами. Они применяются для изготовления сверхчистых металлов, а также для нанесения металлического покрытия. Кстати, карбонилы неплохо себя зарекомендовали в качестве катализаторов химических реакций.

Химическая формула и способ получения углекислого газа

Углекислый газ, или двуокись углерода, имеет химическую формулу CO 2 . Структура молекулы несколько отличается от структуры CO. В данном образовании углерод имеет степень окисления, равную +4. Структура молекулы линейная, а значит, неполярная. Молекула CO 2 не обладает такой сильной прочностью, как CO. В земной атмосфере содержится около 0,03% углекислоты по общему объему. Увеличение этого показателя разрушает озоновый слой Земли. В науке это явление называется парниковым эффектом.

Получить углекислый газ можно различными путями. В промышленности он образуется в результате горения дымовых газов. Может быть побочным продуктом в процессе изготовления алкоголя. Его можно получить в процессе разложения воздуха на основные составляющие, такие как азот, кислород, аргон и другие. В лабораторных условиях оксид углерода (4) можно получить в процессе обжига известняка, а в домашних условиях добыть углекислый газ можно при помощи реакции лимонной кислоты и пищевой соды. Кстати, именно таким образом изготавливались газированные напитки в самом начале их производства.

Физические свойства CO 2

Углекислый газ представляет собой бесцветное газообразное вещество без характерного резкого запаха. Из-за высокого числа окисления данный газ обладает слегка кисловатым привкусом. Данный продукт не поддерживает процесс горения, так как сам является результатом горения. При повышенной концентрации углекислого газа человек утрачивает способность дышать, что приводит к летальному исходу. Более подробно о воздействии углекислого газа на организм человека будет рассказано далее. CO 2 намного тяжелее воздуха и прекрасно растворяется в воде даже при комнатной температуре.

Одним из самых интересных свойств углекислого газа является то, что у него нет жидкого агрегатного состояния при нормальном атмосферном давлении. Однако если воздействовать на структуру углекислого газа воздействие температурой в -56,6 °С и давлением около 519 кПа, то он трансформируется в бесцветную жидкость.

При существенном понижении температуры газ находится в состоянии так называемого «сухого льда» и испаряется при температуре выше чем -78 о С.

Химические свойства CO 2

По своим химическим свойствам оксид углерода (4), формула которого CO 2 , является типичным кислотным оксидом и обладает всеми его свойствами.

1. При взаимодействии с водой образуется угольная кислота, обладающая слабой кислотностью и малой устойчивостью в растворах.

2. При взаимодействии с щелочами углекислый газ образует соответствующую соль и воду.

3. Во время взаимодействия с оксидами активного металла способствует образованию солей.

4. Не поддерживает процесс горения. Активировать данный процесс могут только некоторые активные металлы, такие как литий, калий, натрий.

Влияние угарного газа на организм человека

Вернемся к основной проблеме всех газов - влиянию на организм человека. Угарный газ относится к группе крайне опасных для жизни газов. Для человека и животного он является чрезвычайно сильным ядовитым веществом, которое при попадании в организм серьезно поражает кровь, нервную систему организма и мышцы (в том числе и сердце).

Оксид углерода в воздухе невозможно распознать, так как этот газ не имеет никакого ярко выраженного запаха. Именно этим он и опасен. Попадая через легкие в организм человека, угарный газ активизирует свою разрушительную деятельность в крови и в сотни раз быстрее кислорода начинает взаимодействовать с гемоглобином. В результате этого появляется очень стойкое соединение под названием карбоксигемоглобин. Оно препятствует доставке кислорода из легких к мышцам, что приводит к мышечному голоданию тканей. Особенно серьезно страдает от этого головной мозг.

Из-за отсутствия возможности распознать отравление угарным газом через обоняние, следует знать некоторые основные признаки, которые проявляются на ранних этапах:

  • головокружение, сопровождающееся головной болью;
  • шум в ушах и мерцание перед глазами;
  • сильное сердцебиение и одышка;
  • покраснение лица.

В дальнейшем у жертвы отравления появляется сильная слабость, иногда рвота. В тяжелых случаях отравления возможны непроизвольные судороги, сопровождающиеся дальнейшей потерей сознания и комой. Если же пациенту своевременно не будет оказана соответствующая медицинская помощь, то возможен летальный исход.

Влияние углекислого газа на организм человека

Оксиды углерода с кислотностью +4 относятся к разделу удушающих газов. Иными словами, углекислый газ не является токсичным веществом, однако может существенно влиять на приток кислорода к организму. При повышении уровня углекислого газа до 3-4% у человека возникает серьезная слабость, его начинает клонить в сон. При повышении уровня до 10% начинают развиваться сильнейшие головные боли, головокружение, ухудшение слуха, иногда наблюдается потеря сознания. Если концентрация углекислого газа поднимается до уровня 20%, то наступает смерть от кислородного голодания.

Лечение отравления углекислым газом очень простое - дать жертве доступ к чистому воздуху, при необходимости сделать искусственное дыхание. В крайнем случае нужно подключить пострадавшего к аппарату искусственной вентиляции легких.

Из описаний влияния двух данных оксидов углерода на организм мы можем сделать вывод, что большую опасность для человека все же представляет угарный газ с его высокой токсичностью и направленным воздействием на организм изнутри.

Углекислый газ не отличается таким коварством и менее вреден для человека, поэтому именно это вещество человек активно применяет даже в пищевой промышленности.

Применение оксидов углерода в промышленности и их влияние на различные аспекты жизни

Оксиды углерода имеют очень широкое применение в разных сферах деятельности человека, причем спектр их чрезвычайно богат. Так, окись углерода вовсю применяется в металлургии в процессе выплавки чугуна. Широкую популярность CO получил в качестве материала для хранения продуктов питания в охлажденном виде. Данный оксид применяют для обработки мяса и рыбы, чтобы придать им свежий вид и не изменить вкус. Важно не забывать про токсичность данного газа и помнить, что допустимая доза не должна превышать 200 мг на 1 кг продукта. CO в последнее время все чаще применяют в автомобильной промышленности в качестве топлива для автомобилей на газу.

Диоксид углерода нетоксичен, поэтому сфера его применения широко внедрена в пищевую промышленность, где его применяют в качестве консерванта или разрыхлителя. Также CO 2 применяется при изготовлении минеральных и газированных вод. В твердом состоянии («сухой лед») он часто используется в морозильных установках для поддержания стабильно низкой температуры в помещении или приборе.

Большую популярность приобрели углекислотные огнетушители, пена из которых полностью изолирует огонь от кислорода и не дает пожару разгореться. Соответственно, еще одна сфера применения - пожарная безопасность. Баллоны в пневматических пистолетах также заряжены углекислотой. И конечно же, практически каждый из нас читал, из чего состоит освежитель воздуха для помещений. Да, одной из составляющих является углекислый газ.

Как видим, из-за своей минимальной токсичности углекислый газ больше и чаще встречается в повседневной жизни человека, тогда как угарный газ нашел применение в тяжелой промышленности.

Существуют и другие углеродные соединения с кислородом, благо формула углерода и кислорода позволяет применять различные варианты соединений с разным количеством атомов углерода и кислорода. Ряд оксидов может разниться от C 2 O 2 до C 32 O 8 . И чтобы описать каждый из них, потребуется не одна страница.

Оксиды углерода в природе

Оба вида рассматриваемых здесь оксидов углерода так или иначе присутствуют в природном мире. Так, угарный газ может быть продуктом сгорания лесов или результатом жизнедеятельности человека (выхлопные газы и вредные отходы промышленных предприятий).

Уже известный нам диоксид углерода также является частью сложного состава воздуха. Его содержание в нем составляет около 0,03 % от всего объема. При увеличении этого показателя возникает так называемый «парниковый эффект», которого так опасаются современные ученые.

Углекислый газ выделяют животные и человек путем выдыхания. Он является основным источником такого полезного для растений элемента, как углерод, поэтому многие ученые и бьют на сполох, указывая на недопустимость масштабных вырубок леса. Если растения перестанут поглощать углекислый газ, то процент его содержания в воздухе может повыситься до критических для человеческой жизнедеятельности показателей.

Видимо, многие власть держащие забыли пройденный в детстве материал учебника «Общая химия. 8 класс», иначе вопросу вырубки лесов во многих частях света уделялось бы более серьезное внимание. Это, кстати, касается и проблемы наличия угарного газа в окружающей среде. Количество отходов человеческой жизнедеятельности и процент выбросов этого необычайно токсичного материала в окружающую среду растет изо дня в день. И не факт, что не повторится судьба мира, описанная в прекрасном мультфильме «Волли», когда человечеству пришлось покинуть загаженную до основания Землю и отправиться в другие миры на поиски лучшей жизни.

Поделиться: