Экологические проблемы использования теплоты. Экологические проблемы, связанные с развитием энергетики

Продукты сгорания топлива оказывают определяющее влияние на энергетические и экологические показатели различных теплотехнических установок. Однако помимо этих продуктов при сгорании образуется и ряд других веществ, которые вследствие их малого количества не учитываются в энергетических расчетах, но определяют экологические показатели топок, печей, тепловых двигателей и других устройств современной теплотехники.

В первую очередь к числу экологически вредных продуктов сгорания следует отнести так называемые токсичные вещества, оказывающие негативные воздействия на организм человека и окружающую среду. Основными токсичными веществами являются оксиды азота (NОх), оксид углерода (СО), различные углеводороды (СН), сажа и соединения, содержащие свинец серу.

Оксиды азота образуются в результате химического взаимодействия азота и кислорода воздуха, если температура превышает 1500 К. При сгорании топлив образуется главным образом оксид азота NО, который затем в атмосфере окисляется до NО2. Образование NО увеличивается с ростом температуры газов и концентрации кислорода. Зависимость образования NО от температуры создает определенные трудности с точки зрения увеличения термического КПД теплового двигателя. Например, при увеличении максимальной температуры цикла с 2000 К до 3000 К термический КПД цикла Карно возрастает в 1,5 раза и достигает значения 0,66, но расчетная максимальная концентрация NО в продуктах сгорания возрастает в 10 раз и достигает по объему 1,1 %.

Находящийся в атмосфере NО2 представляет собой газ красновато-бурого цвета, обладающий в больших концентрациях удушливым запахом, вредно воздействующим на слизистые оболочки глаз.

Оксид углерода (СО) образуется во время сгорания при недостатке кислорода. Оксид углерода - бесцветный и не имеющий запаха газ. При вдыхании вместе с воздухом он интенсивно соединяется с гемоглобином крови, что уменьшает ее способность к снабжению организма кислородом. Симптомы отравления организма оксидом углерода: головная боль, сердцебиение, затруднение дыхания и тошнота.

Углеводороды (СН) состоят из исходных или распавшихся молекул топлива, которые не принимали участия в сгорании. Углеводороды появляются в отработавших газах (ОГ) двигателей внутреннего сгорания вследствие гашения пламени вблизи относительно холодных стенок пламени сгорания. В дизелях углеводороды образуются в переобогащенных зонах смеси, где происходит пиролиз молекул топлива. Если в процессе расширения в эти зоны не поступит достаточное количество кислорода, то СН окажется в составе ОГ. Углеводороды под действием солнечных лучей могут взаимодействовать с NОх, образуя биологически активные вещества, которые раздражающе действуют на органы дыхательных путей и вызывают появление так называемого смога.

Особое влияние оказывают выбросы бензола, толуола, полициклических автоматических углеводородов (ПАУ) и в первую очередь бензпирена. ПАУ относится к так называемым канцерогенным веществам, они не выводятся из организма человека, а со временем накапливаются в нем, способствуя образованию злокачественных опухолей.

Сажа представляет собой твердый продукт, состоящий в основном из углерода. Кроме углерода в саже содержится 1 - 3 % (по массе) водорода. Сажа образуется при температуре выше 1500 К в результате термического разложения (пиролиза) при сильном недостатке кислорода. Наличие сажи в отходящих газах обуславливает черный дым на выпуске.

Сажа представляет собой механический загрязнитель н6осоглотки и легких. Большая опасность связана со свойством сажи накапливать на поверхности своих частиц канцерогенные вещества и служить их переносчиком.

Некоторые токсичные вещества, после того как они попадают в атмосферу в составе продуктов сгорания, претерпевают дальнейшие преобразования. Например, при наличии в атмосфере углеводородов, оксидов азота и оксида углерода при интенсивном ультрафиолетовом излучении солнца образуется озон (О3), являющийся сильнейшим окислителем и вызывающий при соответствующей концентрации ухудшение самочувствия людей.

При высоком содержании в малоподвижной и влажной атмосфере NО2, Оз и СН возникает туман коричневого цвета, который получил название «смог» (от английского «smoke» - дым и «fog» - туман). Смог является смесью жидких и газообразных компонентов, он раздражает глаза и слизистые оболочки, ухудшает видимость на дорогах.

Основными источниками выброса токсичных продуктов сгорания являются автомобили, промышленность, тепловые и электрические станции. В некоторых городах содержание в атмосфере токсичных продуктов сгорания превышает предельно допустимую концентрацию в несколько десятков раз.

Для борьбы с этим злом в большинстве стран мира приняты соответствующие законы, ограничивающие содержание токсичных веществ в продуктах сгорания, выбрасываемых в атмосферу.

Выполнение предписываемых соответствующими законами норм разрешенного нормального выброса стало одной из центральных задач теплотехники. Во многих случаях управление работой объектов промышленной теплотехники осуществляется таким образом, чтобы обеспечить требуемый компромисс между их энергетическими, экономическими и экологическими показателями. Во многих случаях достигаемый таким путем уровень экономических показателей превышает разрешенный современными нормами. Поэтому большое значение приобрела нейтрализация и очистка продуктов сгорания перед их выходом в атмосферу. С этой целью используются различные нейтрализаторы и фильтры. Одновременно улучшается состав углеводородных топлив (уменьшение содержание сферы, свинца, ароматических углеводородов), расширяется использование газовых топлив. В перспективе применение в качестве топлива водорода полностью исключит содержание в продуктах сгорания СО, СН и других токсичных углеродосодержащих компонентов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Саратовский государственный технический университет им.Ю.А.Гагарина»

Профессионально-педагогический колледж.

Реферат на тему: «Проблемы экологии, связанные с использованием тепловых машин»

Работу выполнила

студентка группы ЗЧС-912

Петрова Олеся

Введение

5. Охрана окружающей среды от тепловых выбросов

Заключение

выброс тепловой атмосфера топливо

Введение

Существует неразрывная взаимосвязь и взаимозависимость условий обеспечения теплоэнергопотребления и загрязнения окружающей среды. Взаимодействие этих двух факторов жизнедеятельности человека и развитие производственных сил привлекает постепенное внимание к проблеме взаимодействия теплоэнергетики и окружающей среды.

На ранней стадии развития теплоэнергетики основным проявлением этого внимания был поиск в окружающей среде ресурсов, необходимых для обеспечения теплоэнергопотребления и стабильного теплоэнергоснабжения предприятий и жилых зданий. В дальнейшем границы проблемы охватили возможности более полного использования природных ресурсов путём изыскания и рационализации процессов и технологии, добычи и обогащения, переработки и сжигания топлива, а также совершенствования теплоэнергетических установок.

С ростом единичных мощностей блоков, теплоэнергетических станций и теплоэнергетических систем, удельных и суммарных уровней теплоэнергопотребления, возникла задача ограничения загрязняющих выбросов в воздушный бассейн, а также более полного использования их естественной рассеивающей способности.

На современном этапе проблема взаимодействия теплоэнергетики и окружающей среды приобрела новые черты, распространяя своё влияние на громадные объемы атмосферы Земли.

Ещё более значительные масштабы развития теплоэнергопотребления в обозримом будущем предопределяют дальнейший интенсивный рост разнообразных воздействий на атмосферу.

Принципиально новые стороны проблемы взаимодействия теплоэнергетики и окружающей среды возникли в связи с развитием ядерной теплоэнергетики.

Важнейшей стороной проблемы взаимодействия теплоэнергетики и окружающей среды в новых условиях является всё более возрастающее обратное влияниеопределяющая роль условий окружающей среды в решении практических задач теплоэнергетики (выбор типа теплоэнергетических установок, дислокация предприятий, выбор единичных мощностей энергетического оборудования и многое другое).

1. Общая характеристика теплоэнергетики и её выбросов

Теплоэнергетика является одной из основных составляющих энергетики и включает в себя процесс производства тепловой энергии, транспортировки, рассматривает основные условия производства энергии и побочные влияния отрасли на окружающую среду, организм человека и животных.

Как отмечает Ю.В. Новиков, по суммарным выбросам вредных веществ в атмосферу теплоэнергетика занимает первое место среди отраслей промышленности.

Если паровой котёл - «сердце» электростанции, то вода и водяной пар - её «кровь». Они циркулируют внутри установок, крутят лопатки турбин. Так вот эту «кровь» удалось сделать суперкритической, в несколько раз увеличив её температуру и давление. Благодаря этому КПД электростанций существенно вырос. В таких экстремальных условиях обычные металлы выжить не могли. Потребовалось создать принципиально новые, так называемые конструкционные материалы для сверхкритических температур.

Львиная доля электроэнергии вырабатывается в мире на тепловых и атомных станциях, где рабочим телом служит водяной пар. Переход на его сверхкритические параметры (температуру и давление) позволил повысить КПД с 25 до 40%, что дало огромную экономию первичных энергоресурсов - нефти, угля, газа - и в короткий срок многократно повысило энерговооружённость нашей страны. Это стало реальным во многом благодаря основополагающим исследованиям А.Е. Шейндлина теплофизических свойств водяного пара в сверхкритических состояниях. Параллельно с ним многие учёные мира вели разработки в этом направлении, но решение удалось найти отечественному энергетику. Им разработаны не имевшие аналогов в мире методики и экспериментальные установки. Результаты расчётов А.Е. Шейндлина стали основой для строительства электростанций во многих странах. В 1961 г. Шейндлин создал Институт высоких температур, который стал одним из ведущих научных центров РАН.

Международный комитет по присуждению премии «Глобальная энергия» определил трёх лауреатов. Премиальный фонд 2004 г. в размере 900 тыс. долларов был поделен между ними. Премия «За разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах» присуждена академику РАН Федору Нитенкову и профессору Леонарду Дж. Коху (США). Премии «За фундаментальные исследования теплофизических свойств веществ при предельно высоких температур для энергетики» удостоен академик РАН Александр Шейндлин.

2. Воздействие на атмосферу при использовании твердого топлива

Предприятия угольной промышленности оказывают существенное отрицательное влияние на водные и земельные ресурсы. Основные источники выброса вредных веществ в атмосферу - промышленные, вентиляционные и аспирационные системы шахт и обогатительных фабрик и др.

Загрязнение воздушного бассейна в процессе открытой и подземной добычи угля, транспортировки и обогащения каменного угля вызвано буровзрывными работами, работой двигателей внутреннего сгорания и котельных, пылением угольных складов и породных отвалов и другими источниками.

В 2002 году объём выбросов вредных веществ в атмосферу от предприятий отрасли возрос относительно 1995 года на 30 процентов, главным образом, из-за вновь учитываемых выбросов метана от вентиляционных и дегазационных установок на шахтах.

По объёму выбросов вредных веществ угольная отрасль занимает шестое место в промышленности Российской Федерации (вклад на уровне 5%). Степень улавливания и обезвреживания загрязняющих веществ крайне низка (9,1%), при этом не улавливаются углеводороды и ЛОС.

В 2002 году выросли выбросы углеводородов (на 45,5 тыс. т), метана (на 40,6 тыс. т.), сажи (на 1,7 тыс. т), ряда других веществ; отмечено снижение выбросов ЛОС (на 5,2 тыс. т), диоксида серы (на 2,8 тыс. т), твёрдых веществ (на 2,2 тыс. т).

Зональность угля, поступающего от отдельных поставщиков на ТЭС, превышает 79% (в Великобритании она в соответствии с законодательством - 22%, в США - 9%). И увеличение выброса летучей золы в атмосферу продолжается. Между тем электрофильтры для золоулавливания производит лишь один Семибратовский завод, удовлетворяя ежегодные потребности в них не более чем на 5%.

ТЭС, работающие на твёрдом топливе, интенсивно выбрасывают в атмосферу продукты угля и сланцев, содержащих до 50% негорючей массы и вредных примесей. Удельный вес ТЭС в электробалансе страны составляет 79%. Они потребляют до 25% добываемого твёрдого топлива и сбрасывают в среду обитания человека более 15 млн. т золы, шлаков и газообразных веществ.

В США каменный уголь продолжает оставаться основным видом топлива для электростанций. К концу столетия все электростанции там должны стать экологически чистыми, предстоит повысить КПД до 50% и более (сейчас 35%). Чтобы ускорить внедрение технологий очистки угля, ряд угольных, энергетических и машиностроительных компаний при поддержке федерального правительства разработал программу, на реализацию которой потребуется 3,2 млрд. долларов. В течение 20 лет только в США новые технологии будут внедрены на существующих электростанциях общей мощностью 140 тыс. МВт и на новых переоборудуемых электростанциях общей мощностью 170 тыс. кВт.

Экологические технологии сжигания топлива . Традиционный диффузионный способ сжигания даже высококачественных углеводородных топлив приводит к загрязнению окружающей атмосферы главным образом оксидами азота и канцерогенными веществами. В связи с этим необходимы экологически чистые технологии сжигания этих видов топлива: с высоким качеством распыления и смешения с воздухом до зоны горения и интенсивным сжиганием обедненной, предварительно перемешанной, топливно-воздушной смеси, оптимальная с термохимической точки зрения камера сжигания (КС) должна обеспечивать предварительное испарение топлива, полное и равномерное перемешивание его паров с воздухом и устойчивое сжигание обедненной горючей смеси при минимальном времени её пребывания в зоне горения.

В этом плане гораздо эффективнее традиционного диффузного гибридный способ сжигания, представляющий комбинацию диффузной зоны с каналом для предварительного испарения и перемешивания топлива с воздухом.

Разработаны технологии сжигания угля в котлах с циркулирующим кипящим слоем, где достигается эффект связывания экологически опасных примесей серы. Эта технология внедрена при реконструкции Шатурской, Черепетской и Интинской ГРЭС. В Улан-Удэ строится ТЭЦ с современными котлами. Институтом «Теплоэлектропроект» разработана технология газификации угля: сжигается не сам уголь, а выделенный из него газ. Это экологически чистый процесс, но пока он, как и любая новая технология, дорог. В будущем будут внедрены технологии газификации даже нефтяного кокса.

При сжигании угля в псевдосжиженном слое выброс в атмосферу соединений серы уменьшается на 95%, а окислов азота - на 70%.

Очистка дымовых газов. Для очистки дымовых газов применяется известково-каталитический двухступенчатый метод с получением гипса, основанный на поглощении диоксида серы известняковой суспензией в две ступени контакта. Подобная технология, как свидетельствует мировой опыт, наиболее распространена на тепловых электростанциях, сжигающих жидкое и твёрдое топливо с различным содержанием серы в нём, и обеспечивает степень очистки газов от окислов серы не ниже 90-95%. Большое количество отечественных электростанций работают на топливе со средним и высоким содержанием серы в нем, поэтому этот метод должен получить широкое распространение в отечественной энергетике. У нас в стране практически отсутствовал опыт очистки дымовых газов от сернистого ангидрида мокрым известняковым способом.

На долю ТЭС приходится около 70% выбросов оксидов азота в атмосферу. В США и Японии методы очистки дымовых газов от оксидов азота нашли широкое применение, в этих странах работает более 100 установок, в которых используется метод селективного каталитического восстановления оксидов азота аммиаком на платино-ванадиевом катализаторе, правда, стоимость этих установок очень высока, а срок службы катализатора - незначителен.

В последние годы в США фирмой «Genesis Research of Arizona» разработана технология получения так называемого самоочищающегося угля. Такой уголь лучше горит, и при его использовании в дымовых газах оказывается на 80% меньше диоксида серы, дополнительны же расходы составляют лишь часть затрат на установку скрубберов. Технология получения самоочищающегося угля включает две стадии. Первоначально от угля посредством флотации отделяются примеси, затем уголь размалывается в порошок и добавляется в шлам, при этом уголь всплывает и примеси тонут. На первой стадии удаляется почти вся неорганическая сера, а органическая остается. На второй стадии порошкообразный уголь соединяется с химическими веществами, название которых является коммерческой тайной, а затем уплотняется в комки величиной с виноградину. При сгорании эти химические вещества вступают в реакцию с органической серой, причем сера надежно изолирована, что исключает ее попадание в атмосферу. Комки такого модифицированного угля можно транспортировать, хранить и применять как обычный уголь.

Парогазовые системы. Эффективная комплексная система, обеспечивающая не только улавливание вредных примесей из дымовых газов ТЭС, но и одновременно снижающих примерно на 20% удельный расход топлива на производство электроэнергии, разработана в Энергетическом институте Г.Н. Кржижановского. Суть ее в том, что перед сжиганием в топке паровых котлов ТЭС уголь газифицируют, очищают от твердых (содержащих вредные вещества) примесей и направляют в газовые турбины, где продукты сгорания с температурой 400-500 градусов Цельсия сбрасываются в обычные паровые котлы. Подобные парогазовые системы широко используют энергетики ряда стран для уменьшения выброса в атмосферу.

Глубокая комплексная переработка угля. За рубежом интенсивно ведутся работы по отработке технологий и оборудования газификации угля для полного обеспечения промышленности в горючих газах, синтез-газе и водороде. В Нидерландах введена в действие демонстрационная установка кислородной газификации угля для энергоблока мощностью 250 МВт. Намечен ввод четырех подобных установок от 175 до 330 МВт в Европе, десяти установок от 100 до 500 МВт в США и одной установки мощностью 400 МВт в Японии. Процессы газификации при высоких температурах и давлениях дают возможность перерабатывать угли широкого ассортимента. Известны исследования по высокоскоростному пиролизу и каталитической газификации, реализация которых сулит огромные выгоды.

Необходимость углубления переработки угля продиктована предшествующим ходом развития тепло- и электроэнергетики: наилучшие результаты достигаются при комбинированной переработке угля в электричество и тепло. Качественный скачок в использовании угля связан с его комплексной переработкой в рамках гибких технологий. Решение этой сложной проблемы потребует новых технологических установок для энергохимических комплексов, которые обеспечат повышение экономичности ТЭС, снижение капитальных удельных затрат и кардинальное решение вопросов экологии.

3. Влияние на атмосферу при использовании жидкого топлива

В своё время нефть потеснила уголь и вышла на первое место в мировом энергетическом балансе. Однако это чревато определёнными экологическими проблемами.

Так, в 2002 году российские предприятия отрасли выбросили в атмосферу 621 тыс. т загрязняющих веществ (твёрдые вещества, диоксид серы, оксид углерода, оксиды азота и др.). Сточные воды в объёме до 1302.6 млн мі сбрасываются в поверхностные водные объекты и на рельеф.

При сжигании жидких топлив (мазута) с дымовыми газами в атмосферный воздух поступают сернистый и серный ангидриды, оксиды азота, газообразные и твёрдые продукты неполного сгорания топлива, соединения ванадия, солей натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо обладает более «гигиеническими» свойствами: отпадает проблема золоотвалов, которые занимает значительные территории, исключают их полезное использование и являются источником постоянных загрязнений атмосферы и районе станции из-за уноса золы с ветрами. В продуктах сгорания жидких видов топлива отсутствует летучая зола. Применение двухтопливных гибридных камер сгорания вместо традиционных однозонных диффузионных КС с использованием частичного замещения части углеводородного топлива водородом (6% от массы углеводородного топлива) снижает расход нефтяного топлива на 17-20%, уровни выброса частиц сажи - на порядок, бензопирена - в 10-15 раз, оксидов азота - в 5 раз).

В большинстве стран запрещено сжигание нефтяного топлива с сернистостью выше 0,5%, в России же половина солярки не укладывается в этот норматив, а сернистость котельного топлива достигает 3%.

Сжигать нефть, говоря словами Д.И. Менделеева, все равно, что топить печь ассигнациями. Поэтому доля использования жидкого топлива в энергетике за последние годы существенно снижается. Зарождающаяся тенденция будет в дальнейшем усиливаться в связи с существенным расширением использования жидкого топлива в других областях народного хозяйства: на транспорте, в химической промышленности, в том числе в производстве пластмасс, смазочных материалов, предметов бытовой химии и т.д. К сожалению, используется нефть не лучшим образом. В 1984 году при мировом производстве нефтепродуктов 2750 млн. т бензина получено 600 млн. т керосина и реактивного топлива - 210, дизельного топлива - 600, мазута - 600 млн. т. Хороший пример ресурсосбережения показала Япония, которая стремится максимально снизить зависимость страны от импорта нефти. Для решения этой важной экономической задачи на протяжении последних 20 лет прилагались просто гигантские усилия. Приоритетное внимание получила энергосберегающая технология. И как итог проделанной работы - для производства того же объёма валового национального продукта Японии сегодня требуется в два раза меньше нефти, чем в 1974 году. Несомненно, нововведения благоприятно сказались на улучшении экологической обстановки.

4. Влияние на атмосферу при использовании природного газа

По экологическим критериям природный газ - наиболее оптимальное топливо. В продуктах сгорания отсутствуют зола, копоть и такие канцерогены, как бензопирен.

При сжигании газа единственным существенным загрязнителем атмосферы остаются окислы азота. Однако выброс окислов азота при сжигании на ТЭС природного газа в среднем на 20 процентов ниже, чем при сжигании угля. Это объясняется не свойствам самого топлива, а особенностями процессов их сжигания. Коэффициент избытка воздуха при сжигании угля ниже, чем при сжигании природного газа. Таким образом, природный газ - наиболее экологически чистый вид энергетического топлива и по выделению оксидов азота в процессе горения.

Изменения в окружающей среде при транспортировке газа. Современный магистральный трубопровод представляет собой сложное инженерное оборудование, которое помимо линейной части (собственно трубопровода) включает в себя установки для подготовки нефти или газа к перекачке, насосные и компрессорные станции, резервуарные парки, линии связи, систему электрохимической защиты, дороги, идущие вдоль трассы, и подъезды к ним, а также временные жилые посёлки эксплуатационников.

Например, общая протяженность газопроводов в России составляет примерно 140 тыс. км. Например, на территории Удмуртской Республики проходят 13 магистральных трубопроводов, доля выбросов которых составляет более 30% от соответствующего объёма по республике. Выбросы, главным образом метана, распределены по длине газопроводов, в основном вне пределов населённых пунктов.

Существенному загрязнению подвергается атмосферный воздух вследствие потерь от больших и малых «дыханий» резервуаров, утечек газа и т.д.

Загрязнение атмосферы в результате аварийного выброса газа или сжигания нефти и нефтепродуктов, различных на поверхности при аварии, характеризуется значительно меньшим периодом воздействия, и его можно отнести к кратковременному.

Атмосферный воздух загрязняется также в результате утечки газа через негерметичные соединения трубопровода, утечки и испарения в процессе хранения и выполнения сливно-наливных операций, потерь на газонефте- и нефтепродуктопроводах и т.д. В результате может подавляться рост растительности и повышаться предельно допустимые концентрации в воздухе.

5. Охрана атмосферы от тепловых выбросов

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода.

Размещение ТЭС. Ряд ограничений и технических требований при выборе площадке под строительство диктуется экологическими соображениями.

Во-первых, так называемый фон загрязнений, который возникает в связи с работой в этой зоне ряда промышленных предприятий, а иногда и уже существующих электростанций. Если величина загрязнений в месте предполагаемого строительства уже достигла предельных значений или близка к ним, размещение, например, тепловой станции не должно разрешаться.

Во-вторых, при наличии определённого, но недостаточно высокого фона загрязнений должны быть проведены подробные оценки, позволяющие сопоставить значения возможных выбросов от проектируемой тепловой станции с уже существующими в данном районе. При этом нужно учитывать различные по характеру и содержанию факторы: направленность, силу и периодичность ветров в этой местности, вероятность осадков, абсолютные выбросы станции при работе на предполагаемом виде топлива, инструкции топочных устройство, показатели систем очистки и улавливания выбросов и т.д. После сопоставления полученной суммарной (с учётом воздействия от проектируемой тепловой станции) величины выбросов с предельно допустимой и должен быть сделан окончательный вывод о целесообразности строительства ТЭС.

При сооружении электростанций, прежде всего ТЭЦ, в городах или пригородах предусматривается создание лесных полос между станцией и жилыми массивами. Они уменьшают воздействие шума на близлежащие районы, способствуют задержанию пыли при ветрах в направлении жилых массивов.

При проектировании и строительстве ТЭС необходимо планировать их оснащение высокоэффективными средствами очистки и утилизации отходов, сбросов и выбросов загрязняющих веществ, использование экологически безопасных видов топлива.

Защита воздушного бассейна. Защита атмосферы от основного источника загрязнений ТЭС - диоксида серы - происходит прежде всего путём его рассеивания в более высоких слоях воздушного бассейна. Для этого сооружаются дымовые трубы высотой 180, 250 и даже 420 м. Более радикальное средство сокращения выбросов диоксида серы - выделение серы из топлива до его сжигания на ТЭС.

Наиболее эффективный способ снижения выбросов сернистого газа - сооружение на ТЭС известняковых сероулавливающих установок и внедрение на обогатительных фабриках установок по извлечению из угля пиритной серы.

Одним из важных документом в охране атмосферы от тепловых выбросов на территории Республики Беларусь является Закон Республики Беларусь «Об охране атмосферного воздуха». В Законе подчёркивается, что атмосферный воздух является одним из основных жизненно важных элементов окружающей среды, благоприятное состояние которого составляет естественную основу устойчивого социально-экономического развития республики. Закон направлен на сохранение и улучшение качества атмосферного воздуха, его восстановление для обеспечения экологической безопасности жизнедеятельности человека, а также предотвращение вредного воздействия на окружающую среду. Закон устанавливает правовые и организационные основы норм хозяйственной и иной деятельности в области использования и охраны атмосферного воздуха.

Заключение

Главная опасность теплоэнергетики для атмосферы заключается в том, что сжигание углеродсодержащих топлив приводит к появлению двуокиси углерода CO2, которая выбрасывается в атмосферу и способствует созданию парникового эффекта.

Наличие в сжигаемом угле добавок серы приводит к появлению окислов серы, они поступают в атмосферу и после реакции с парами воды в облаках создают серную кислоту, которая с осадками падает на землю. Так возникают кислотные осадки с серной кислотой.

Другим источником кислотных осадков являются окислы азота, которые возникают в топках ТЭС при высоких температурах (при обычных температурах азот не взаимодействует с кислородом атмосферы). Далее эти окислы поступают в атмосферу, вступают в реакцию с парами воды в облаках и создают азотную кислоту, которая вместе с осадками попадает на землю. Так возникают кислотные осадки с азотной кислотой.

ТЭС на угле, вырабатывающая электроэнергию мощностью 1 ГВт = 10" Вт, ежегодно потребляет 3 млн. угля, выбрасывая в окружающую среду 7 млн. т СО2, 120 тыс. т двуокиси серы, 20 тыс. т оксидов азота NО2, и 750 тыс. т золы.

В каменном угле и летучей золе содержатся значительные количества радиоактивных примесей. Годовой выброс в атмосферу в районе расположения ТЭС мощностью 1 ГВт приводит к накоплению на почве радиоактивности, в 10-20 раз превышающей радиоактивность годовых выбросов АЭС такой же мощности.

Таким образом, защита атмосферы от тепловых выбросов должна быть направлена на снижение объёмов газовых выбросов и их очистку и включать следующие мероприятия:

Контроль за состоянием окружающей среды;

Применение методов, способов и средств, ограничивающих объёмы выбросов газа и подачи его в промысловую газосборочную сеть;

Использование в аварийных случаях факельных устройств, обеспечивающих полное сгорание сбрасываемого газа;

Обеспечение соблюдения экологических нормативов проектируемыми объектами и сооружениями;

Применение системы автоматических блокировок технологических потоков в нефтепереработке, позволяющей герметизировать опасные участки в аварийных ситуациях и осуществить разрядку этого звена в факельную систему;

Максимально возможное изменение топливных режимов тепловых энергетических установок в пользу экологически чистых видов топлива и режимов его снижения;

Достижение основного объёма снижения газовых выбросов в нефтепереработке путём строительства установок по подготовке попутного и нефтяного газа и систем газопроводов, обеспечивающих утилизацию.

Снижение объёмов вредных выбросов и нефтепереработке достигается в процессе реконструкции и модернизации нефтеперерабатывающего производства, сопровождаемых строительством природоохранных объектов.

Размещено на Allbest.ru

Подобные документы

    Общая характеристика теплоэнергетики и её выбросов. Воздействие предприятий на атмосферу при использовании твердого, жидкого топлива. Экологические технологии сжигания топлива. Влияние на атмосферу использования природного газа. Охрана окружающей среды.

    контрольная работа , добавлен 06.11.2008

    Общая характеристика внешней среды промышленного предприятия. Статистика расходов на охрану окружающей среды. Проблемы воздействия теплоэнергетики на атмосферу. Загрязнители атмосферы, образующиеся при сжигании топлива. Инвентаризация источников выбросов.

    курсовая работа , добавлен 19.07.2013

    Актуальность очистки выбросов тепловых электростанций в атмосферу. Токсичные вещества в топливе и дымовых газах. Преобразование вредных выбросов ТЭС в атмосферном воздухе. Типы и характеристики золоуловителей. Переработка сернистых топлив перед сжиганием.

    курсовая работа , добавлен 05.01.2014

    Расчет выбросов твердых частиц летучей золы и несгоревшего топлива, выбрасываемых в атмосферу с дымовыми газами котлоагрегатов при сжигании твердого топлива и мазута. Принцип расчёта величины предельно допустимого выброса. Расчет опасной скорости ветра.

    контрольная работа , добавлен 07.02.2013

    Отрицательное влияние тепловых двигателей, выбросы вредных веществ в атмосферу, производство автомобилей. Авиация и ракетоносители, применение газотурбинных двигательных установок. Загрязнение окружающей среды судами. Способы очистки газовых выбросов.

    реферат , добавлен 30.11.2010

    Расчет выбросов загрязняющих веществ в атмосферу по результатам измерений на технологических участках и складе топлива. Определение категории опасности предприятия. Разработка плана-графика контроля за выбросами предприятием вредных веществ в атмосферу.

    реферат , добавлен 24.12.2014

    Вещества, загрязняющие атмосферу, их состав. Платежи за загрязнение окружающей среды. Методы расчетов выбросов загрязняющих веществ в атмосферу. Характеристика предприятия как источника загрязнения атмосферы, расчет выбросов на примере ЛОК "Радуга".

    курсовая работа , добавлен 19.10.2009

    Основные компоненты, выбрасываемые в атмосферу при сжигании различных видов топлива в энергоустановках. Расчет суммарного расхода топлива и высоты дымовой трубы. Анализ зависимости концентрации вредных примесей от расстояния до источника выбросов.

    контрольная работа , добавлен 10.04.2011

    Загрязнение атмосферы при испытании и эксплуатации энергетических установок. Влияние на характер вредных выбросов в атмосферу вида топлива. Атомные электростанции и экологические проблемы при их эксплуатации. Мероприятия по защите окружающей среды.

    реферат , добавлен 04.03.2010

    Перспективные воздухоохранные технологии в энергетике. Сокращение выбросов твёрдых частиц в атмосферу. Эффектные методы снижения выбросов оксидов азота в атмосферу газомазутными котлами ТЭС. Рассеивание и трансформация некоторых веществ в атмосфере.

  • Вопрос 3. Экономическая эффективность пп и мето­ды ее определения.
  • Вопрос 4. Экономический ущерб от загрязнения и методы его определения
  • Вопрос 5. Основные направления экологизации экономики России.
  • Вопрос 6. Лесное хозяйство и характеристика экологических последствий лесохозяйственной деятельности. Пути экологической оптимизации отрасли.
  • Вопрос 7. Возникновение внешних эффектов и их учет в эколого-экономическом развитии
  • Вопрос 9. Направления формирования экономического механизма природопользования
  • Вопрос 10. Виды и формы платы за природные ресурсы.
  • Вопрос 11. Техногенный тип экономики и его ограничения
  • Вопрос 12. Эколого-экономическое развитие в концепции устойчивости хозяйственных систем
  • Вопрос 13. Экосфера как сложная динамическая саморегулирующаяся система. Гомеостазис экосферы. Роль живого вещества.
  • Вопрос 14. Экосистема и биогеоценоз: определения сходство и различия.
  • Вопрос 15. Биологическая продуктивность (бп) экосистем (биогеоценозов).
  • Вопрос 16. Взаимосвязь биологической продуктивности и экологической стабильности.
  • Вопрос 17. Экологические сукцессии, естественные и искусственные. Использование в практических целях.
  • Вопрос 18. Методы управления популяциями и экосистемами (биогеоценозами).
  • Вопрос 19. Региональные и локальные системы природопользования.
  • Вопрос 20. Традиционное природопользование и его основные виды
  • 1. Традиционное природопользование и его основные виды.
  • 21. Экологические проблемы энергетики и пути их решения.
  • 21. Экологические проблемы энергетики и пути их решения.
  • 22. Экологические проблемы промышленности и пути их решения.
  • 23. Экологические проблемы сельского хозяйства и пути их решения.
  • 24. Экологические проблемы транспорта и пути их решения.
  • 25. Антропогенное воздействие на атмосферу и пути снижения негативного эффекта.
  • 26. Антропогенное воздействие на гидросферу и пути снижения негативного эффекта.
  • 27. Проблема рационального использования земельных ре­сурсов.
  • 31. Роль институционного фактора в концепции устойчивого развития.
  • 32. Антропогенные изменения климата.
  • 33. Основные механизмы взаимодействия гидросферы и атмосферы.
  • 34. Охрана видового и экосистемного разнообразия биосферы.
  • 35. Современные ландшафты. Классификация и распростра­нение.
  • 36. Вертикальная и горизонтальная структура ландшафтов.
  • 37. Проблемы обезлесения и опустынивания.
  • 38. Проблемы сохранения генетического разнообразия.
  • 39. Геоэкологические аспекты глобальных кризисных ситуа­ций: деградация систем жизнеобеспечения экосферы. Ресурс­ные проблемы.
  • 41. Экологическая экспертиза. Основные принципы. Закон рф «Об экологической экспертизе».
  • 42. Устойчивое развитие как основа рационального природо­пользования. Решения конференции в Рио-де-Жанейро (1992) и Всемирного саммита в Йоханнесбурге (2002).
  • 44. Роль автотранспорта в загрязнении окружающей среды.
  • 45. Земледелие как отраслевая система природопользования.
  • 46. Государственные природные заповедники России: статус, режим, функции, задачи и перспективы развития.
  • Вопрос 49. Государственные природные заповедники России: статус, режим, функции, задачи и перспективы развития.
  • Вопрос 51. Экологическая культура как фактор формирования и эво­люции систем природопользования.
  • Вопрос 52. Различия в потреблении природных ресурсов в странах разного типа.
  • 21. Экологические проблемы энергетики и пути их решения.

    В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, а следовательно, и с поступлением продуктов горения в окружающую среду.

    Экологические проблемы теплоэнергетики

    Воздействие тепловых электростанций на окружающую среду во многом зависит от вида сжигаемого топлива.

    Твердое топливо . При сжигании твердого топлива в атмосферу поступают летучая зола с частицами не­догоревшего топлива, сернистый и серный ангидри­ды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты непол­ного сгорания топлива. Летучая зола в некоторых слу­чаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антра­цитов в незначительных количествах содержится мы­шьяк, а в золе Экибастузского и некоторых других месторождений - свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна - сво­бодный оксид кальция. К твердому топливу относятся уголь и торф.

    Жидкое топливо . При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух по­ступают: сернистый и серный ангидриды, оксиды азо­та, соединения ванадия, солей натрия, а также веще­ства, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо более «гигие­ничное». При этом полностью отпадает проблема золоотвалов, которые занимают значительные территории, исключают их полезное использование и являются ис­точником постоянных загрязнений атмосферы в райо­не станции из-за уноса части золы с ветрами. В продук­тах сгорания жидких видов топлива отсутствует лету­чая зола. К жидкому топливу относится природный газ(???).

    в качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепро­дукты, природный газ и, реже, древесину и торф. Ос­новными компонентами горючих материалов являют­ся углерод, водород и кислород, в меньших количе­ствах содержится сера и азот, присутствуют также сле­ды металлов и их соединений (чаще всего оксиды и суль­фиды).

    В теплоэнергетике источником массированных атмос­ферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т. е. любые предприятия, работа которых связана со сжиганием топлива.

    Наряду с газообразными выбросами теплоэнергети­ка производит огромные массы твердых отходов; к ним относятся зола и шлаки.

    Отходы углеобогатительных фабрик содержат 55-60% SiO2, 22-26% Аl2О3, 5-12% Fe2O3, 0,5-1% CaO, 4-4,5% К2О и Nа2О и до 5% С. Они поступают в отвалы, которые пылят, дымят и резко ухудшают состояние атмосферы и прилегающих территорий.

    Для электростанции, работающей на угле, требует­ся 3,6 млн т угля, 150 м3 воды и около 30 млрд м3 воздуха ежегодно. В приведенных цифрах не учтены нарушения окружающей среды, связанные с добычей и транспортировкой угля.

    Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие вполне можно сравнить с действием вулкана. Но если последний обычно выбрасывает продукты вулканизма в больших количества разово, то электростанция дела­ет это постоянно.

    Загрязнение и отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой - региональные и локальные. Так же обстоит дело и в других отраслях хозяйства, но все же энерге­тика и сжигание ископаемого топлива остаются источ­ником основных глобальных загрязнителей. Они посту­пают в атмосферу, и за счет их накопления изменяется концентрация малых газовых составляющих атмосфе­ры, в том числе парниковых газов. В атмосфере появились газы, которые ранее в ней практически отсут­ствовали - хлорфторуглероды. Это глобальные заг­рязнители, имеющие высокий парниковый эффект и в то же время участвующие в разрушении озонового экрана стратосферы.

    Таким образом, следует отметить, что на современ­ном этапе тепловые электростанции выбрасывают в ат­мосферу около 20% от общего количества всех вредных отходов промышленности. Они существенно влияют на окружающую среду района их расположения и на со­стояние биосферы в целом. Наиболее вредны конденса­ционные электрические станции, работающие на низ­косортных видах топлива.

    Сточные воды ТЭС и ливневые стоки с их территорий, загрязненные отходами технологических циклов энер­гоустановок и содержащие ванадий, никель, фтор, фе­нолы и нефтепродукты, при сбросе в водоемы могут оказать влияние на качество воды, водные организмы. Изменение химического состава тех или иных веществ приводит к нарушению установившихся в водоеме ус­ловий обитания и сказывается на видовом составе и чис­ленности водных организмов и бактерий и в конечном счете может привести к нарушениям процессов само­очищения водоемов от загрязнений и к ухудшению их санитарного состояния.

    Представляет опасность и так называемое тепловое загрязнение водоемов с многообразными нарушения­ми их состояния. ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром. При работе турбин необходимо охлаждать водой от­работанный пар, поэтому от энергетической станции непрерывно отходит поток воды, подогретой обычно на 8-12 °С и сбрасываемой в водоем. Крупные ТЭС нуждаются в больших объемах воды. Они сбрасыва­ют в подогретом состоянии 80-90 м3/с воды. Это оз­начает, что в водоем непрерывно поступает мощный поток теплой воды примерно такого масштаба, как река Москва.

    Зона подогрева, образующаяся в месте впадения теплой «реки», представляет собой своеобразный уча­сток водоема, в котором температура максимальна в точке водосброса и уменьшается по мере удаления от нее. Зоны подогрева крупных ТЭС занимают пло­щадь в несколько десятков квадратных километров. Зимой в зоне подогрева образуются полыньи (в се­верных и средних широтах). В летние месяцы тем­пературы в зонах подогрева зависят от естественной температуры забираемой воды. Если в водоеме тем­пература воды 20 °С, то в зоне подогрева она может достигнуть 28-32°С.

    В результате повышения температур в водоеме и нарушения их естественного гидротермического ре­жима интенсифицируются процессы «цветения» воды, уменьшается способность газов растворяться в воде, меняются физические свойства воды, ускоряются все химические и биологические процессы, протекающие в ней, и т. д. В зоне подогрева снижается прозрач­ность воды, увеличивается рН, увеличивается скорость разложения легко окисляющихся веществ. Скорость фотосинтеза в такой воде заметно понижается.

    Экологические проблемы гидроэнергетики

    Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энерге­тическом балансе постепенно уменьшается. Это свя­зано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнин­ных водохранилищ. Считается, что в перспективе мировое производство энергии ГЭС не будет превы­шать 5% от общей.

    Одной из важнейших причин уменьшения доли энер­гии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросоору­жений на окружающую среду.

    По данным разных исследований, одним из важнейших воздействий гидроэнер­гетики на окружающую среду является отчуждение значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет ис­пользования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоп­лено не менее 6 млн га земель. На их месте уничтоже­ны естественные экосистемы.

    Значительные площади земель вблизи водохрани­лищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, пере­ходят в категорию заболоченных. В равнинных усло­виях подтопленные земли могут составлять 10% и бо­лее от затопленных. Уничтожение земель и свойствен­ных им экосистем происходит также в результате их разрушения водой (абразии) при формировании бере­говой линии. Абразионные процессы обычно продолжа­ются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством во­дохранилищ связано резкое нарушение гидрологичес­кого режима рек, свойственных им экосистем и видо­вого состава гидробионтов.

    В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и дру­гие процессы, обусловливаемые тепловым загрязнени­ем. Последнее, совместно с накоплением биогенных ве­ществ, создает условия для зарастания водоемов и ин­тенсивного развития водорослей, в том числе и ядови­тых сине-зеленых. По этим причинам, а также вслед­ствие медленной обновляемости вод резко снижается их способность к самоочищению.

    Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами. Снижаются вку­совые качества обитателей водной среды.

    Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС.

    В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактив­ные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают про­блематичной возможность использования территорий, занимаемых водохранилищами, после их ликвидации.

    Водохранилища оказывают заметное влияние на ат­мосферные процессы. Например, в засушливых (арид­ных) районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз.

    С повышенным испарением связано понижение тем­пературы воздуха, увеличение туманных явлений. Раз­личие тепловых балансов водохранилищ и прилегаю­щей суши обусловливает формирование местных вет­ров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положитель­ную), изменение погоды. В ряде случаев в зоне водохра­нилищ приходится менять направление сельского хо­зяйства. Например в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не ус­певают вызревать, повышается заболеваемость расте­ний, ухудшается качество продукции.

    Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать земле­трясения. Увеличивается вероятность оползневых яв­лений и вероятность катастроф в результате возможно­го разрушения плотин.

    В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. На­пример водохранилище ГЭС (или система водохрани­лищ в случае каскада ГЭС) может существовать десятки и сотни лет, при этом на месте естественного водо­тока возникает техногенный объект с искусственным регулированием природных процессов - природно-техническая система (ПТС).

    Рассматривая воздействие ГЭС на окружающую сре­ду, следует все же отметить жизнесберегающую фун­кцию ГЭС. Так, выработка каждого млрд кВтч элект­роэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.

    Проблемы ядерной энергетики

    Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. До­статочно отметить, что 0,5 кг ядерного топлива по­зволяет получать столько же энергии, сколько сжи­гание 1000 т каменного угля.

    Многолетний опыт эксплуатации АЭС во всех стра­нах показывает, что они не оказывают заметного вли­яния на окружающую среду. К 1998 г. среднее время эксплуатации АЭС составило 20 лет. Надежность, бе­зопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на ок­ружающую среду.

    При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем, они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.

    До Чернобыльской катастрофы в нашей стране ника­кая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то не по радиационным при­чинам, погибло 17 человек. После 1986 г. главную эко­логическую опасность АЭС стали связывать с возмож­ностью аварии. Хотя вероятность их на современных АЭС и невелика, но она не исключается.

    До недавнего времени основные экологические проблемы АЭС связывались с захоронением отработанного топлива, а также с ликвидацией самих АЭС после окончания допустимых сроков эксплуатации. Имеются данные, что стоимость таких ликвидационных работ составляет от 1/6 до 1/3 от стоимости самих АЭС. В целом можно назвать следующие воздействия АЭС на среду:1 - разрушение экосистем и их элементов (почв, грунтов, во-доносных структур и т. п.) в местах добычи руд (особенно при открытом способе); 2 - изъятие земель под строительство самих АЭС; 3 - изъятие значительных объемов вод из различных источников и сброс подогретых вод; 4 - не исключено радиоактивное загрязнение атмосферы, вод и почв в процессе добычи и транспортировки сырья, а также при работе АЭС, складировании и переработке отходов, их захоронениях.

    Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. Велика вероятность увеличения доли углей и других видов менее чистого топлива в получении энергии. Некоторые пути и способы их использования позволяют существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе:

    1. Использование и совершенствование очистных устройств.

    2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами.

    3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии.

    4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Крайне расточительно использование электрической энергии для получения тепла. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

    5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. + Использование альтернативной энергетики

    6. Использование по возможности альтернативных источников энергии.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    СЕРОВСКИЙ МЕТАЛЛУРГИЧЕСКИЙ ТЕХНИКУМ

    Реферат

    по Экологическим основам природопользования

    на тему: Экологические проблемы, связанные с развитием энергетики

    Выполнил а : студентка

    заочного отделения

    IV курса группа ТиТО

    Сочнева Наталья

    Проверила: преподаватель

    Чернышева Н.Г.

    Введение

    1. Экологические проблемы теплоэнергетики

    2. Экологические проблемы гидроэнергетики

    3. Проблемы ядерной энергетики

    4. Некоторые пути решения проблем современной энергетики

    Заключение

    Список использованной литературы

    Введение

    Существует образное выражение, что мы живем в эпоху трех «Э»: экономика, энергетика, экология. При этом экология как наука и образ мышления привлекает все более и более пристальное внимание человечества.

    Экологию рассматривают как науку и учебную дисциплину, которая призвана изучать взаимоотношения организмов и среды во всем их разнообразии. При этом под средой понимается не только мир неживой природы, а и воздействие одних организмов или их сообществ на другие организмы и сообщества. Экологию иногда связывают только с учением о среде обитания или окружающей среде. Последнее в основе правильно с той, однако, существенной поправкой, что среду нельзя рассматривать в отрыве от организмов, как и организмы вне их среды обитания. Это составные части единого функционального целого, что и подчеркивается приведенным выше определением экологии как науки о взаимоотношениях организмов и среды.

    Экология энергетики - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12 -15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения.

    В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой энергии, и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, следовательно, и с поступлением продуктов горения в окружающую среду.

    Целью данной работы является изучение влияния на окружающую среду разных видов энергетики (теплоэнергетика, гидроэнергетика, ядерная энергетика) и рассмотрение способов снижения выбросов и загрязнений от энергетических объектов. При написании данного реферата, я ставлю перед собой задачу выявления путей решения проблем каждого из рассмотренного вида энергетики.

    1. Экологи ческие проблемы теплоэнергетики

    Воздействие тепловых электростанций на окружающую среду во многом зависит от вида сжигаемого топлива (твердое и жидкое).

    При сжигании твердого топлива в атмосферу поступают летучая зола с частицами недогоревшего топлива, сернистый и серный ангидриды, оксиды азота, некоторое количество фтористых соединений, а также газообразные продукты неполного сгорания топлива. Летучая зола в некоторых случаях содержит помимо нетоксичных составляющих и более вредные примеси. Так, в золе донецких антрацитов в незначительных количествах содержится мышьяк, а в золе Экибастузского и некоторых других месторождений - свободный диоксид кремния, в золе сланцев и углей Канско-Ачинского бассейна - свободный оксид кальция.

    Уголь - самое распространенное ископаемое топливо на нашей планете. Специалисты считают, что его запасов хватит на 500 лет. Кроме того, уголь распространен по всему миру более равномерно и он более экономичен, чем нефть. Из угля можно получить синтетическое жидкое топливо. Метод получения горючего путем переработки угля известен давно. Однако слишком высокой была себестоимость такой продукции. Процесс происходит при высоком давлении. У этого топлива есть одно неоспоримое преимущество - у него выше октановое число. Это означает, что экологически оно будет более чистым.

    Торф. При энергетическом использовании торфа имеет место ряд отрицательных последствий для окружающей среды, возникающих в результате добычи торфа в широких масштабах. К ним, в частности, относятся нарушение режима водных систем, изменение ландшафта и почвенного покрова в местах торфодобычи, ухудшение качества местных источников пресной воды и загрязнение воздушного бассейна, резкое ухудшение условий существования животных. Значительные экологические трудности возникают и в связи с необходимостью перевозки и хранения торфа.

    При сжигании жидкого топлива (мазутов) с дымовыми газами в атмосферный воздух поступают: сернистый и серный ангидриды, оксиды азота, соединения ванадия, солей натрия, а также вещества, удаляемые с поверхности котлов при чистке. С экологических позиций жидкое топливо более «гигиеничное». При этом полностью отпадает проблема золоотвалов, которые занимают значительные территории, исключают их полезное использование и являются источником постоянных загрязнений атмосферы в районе станции из-за уноса части золы с ветрами. В продуктах сгорания жидких видов топлива отсутствует летучая зола.

    Природный газ. При сжигании природного газа существенным загрязнителем атмосферы являются оксиды азота. Однако выброс оксидов азота при сжигании на ТЭС природного газа в среднем на 20% ниже, чем при сжигании угля. Это объясняется не свойствами самого топлива, а особенностями процессов сжигания. Коэффициент избытка воздуха при сжигании угля ниже, чем при сжигании природного газа. Таким образом, природный газ является наиболее экологически чистым видом энергетического топлива и по выделению оксидов азота в процессе горения.

    Комплексное влияние предприятий теплоэнергетики на биосферу в целом проиллюстрировано в табл. 1.

    Таким образом, в качестве топлива на тепловых электростанциях используют уголь, нефть и нефтепродукты, природный газ и, реже, древесину и торф. Основными компонентами горючих материалов являются углерод, водород и кислород, в меньших количествах содержится сера и азот, присутствуют также следы металлов и их соединений (чаще всего оксиды и сульфиды).

    В теплоэнергетике источником массированных атмосферных выбросов и крупнотоннажных твердых отходов являются теплоэлектростанции, предприятия и установки паросилового хозяйства, т. е. любые предприятия, работа которых связана со сжиганием топлива.

    Наряду с газообразными выбросами теплоэнергетика производит огромные массы твердых отходов. К ним относятся зола и шлаки.

    Отходы углеобогатительных фабрик содержат 55-60% SiO 2 , 22-26% Аl 2 О 3 , 5-12% Fe 2 O 3 , 0,5-1% CaO, 4-4,5% К 2 О и Nа 2 О и до 5% С. Они поступают в отвалы, которые пылят, дымят и резко ухудшают состояние атмосферы и прилегающих территорий.

    Жизнь на Земле возникла в условиях восстановительной атмосферы и только значительно позже, спустя примерно 2 млрд. лет, биосфера постепенно преобразовала восстановительную атмосферу в окислительную. При этом живое вещество предварительно вывело из атмосферы различные вещества, в частности, углекислый газ, образовав огромные залежи известняков и других углеродосодержащих соединений. Сейчас наша техногенная цивилизация сформировала мощный поток восстановительных газов, в первую очередь вследствие сжигания ископаемого топлива в целях получения энергии. За 30 лет, с 1970 по 2000 год, в мире было сожжено около 450 млрд. баррелей нефти, 90 млрд. т угля, 11 трлн. м 3 газа (табл. 2).

    Выбросы в атмосферу электростанцией мощностью 1000 МВт в год (в тоннах)

    Основную часть выброса занимает углекислый газ - порядка 1 млн. т в пересчете на углерод 1 Мт. Со сточными водами тепловой электростанции ежегодно удаляется 66 т органики, 82 т серной кислоты, 26 т хлоридов, 41 т фосфатов и почти 500 т взвешенных частиц. Зола электростанций часто содержит повышенные концентрации тяжелых, редко земельных и радиоактивных веществ.

    Для электростанции, работающей на угле, требуется 3,6 млн. т угля, 150 м 3 воды и около 30 млрд. м 3 воздуха ежегодно. В приведенных цифрах не учтены нарушения окружающей среды, связанные с добычей и транспортировкой угля.

    Если учесть, что подобная электростанция активно работает несколько десятилетий, то ее воздействие вполне можно сравнить с действием вулкана. Но если последний обычно выбрасывает продукты вулканизма в больших количества разово, то электростанция делает это постоянно. За десятки тысячелетий вулканическая деятельность не смогла сколько-нибудь заметно повлиять на состав атмосферы, а хозяйственная деятельность человека за какие-то 100-200 лет обусловила такие изменения, причем в основном за счет сжигания ископаемого топлива и выбросов парниковых газов разрушенными и деформированными экосистемами.

    Коэффициент полезного действия энергетических установок пока невелик и составляет 30-40%, большая часть топлива сжигается впустую. Полученная энергия тем или иным способом используется и превращается, в конечном счете, в тепловую, т. е. помимо химического в биосферу поступает тепловое загрязнение.

    Загрязнение и отходы энергетических объектов в виде газовой, жидкой и твердой фазы распределяются на два потока: один вызывает глобальные изменения, а другой -- региональные и локальные. Так же обстоит дело и в других отраслях хозяйства, но все же энергетика и сжигание ископаемого топлива остаются источником основных глобальных загрязнителей. Они поступают в атмосферу, и за счет их накопления изменяется концентрация малых газовых составляющих атмосферы, в том числе парниковых газов. В атмосфере появились газы, которые ранее в ней практически отсутствовали - хлорфторуглероды. Это глобальные загрязнители, имеющие высокий парниковый эффект и в то же время участвующие в разрушении озонового экрана стратосферы.

    Таким образом, следует отметить, что на современном этапе тепловые электростанции выбрасывают в атмосферу около 20% от общего количества всех вредных отходов промышленности. Они существенно влияют на окружающую среду района их расположения и на состояние биосферы в целом. Наиболее вредны конденсационные электрические станции, работающие на низкосортных видах топлива. Так, при сжигании на станции за 1 час 1060 т донецкого угля из топок котлов удаляется 34,5 т шлака, из бункеров электрофильтров, очищающих газы на 99% - 193,5 т золы, а через трубы в атмосферу выбрасывается 10 млн. м 3 дымовых газов. Эти газы, помимо азота и остатков кислорода, содержат 2350 т диоксида углерода, 251 т паров воды, 34 т диоксида серы, 9,34 т оксидов азота (в пересчете на диоксид) и 2 т летучей золы, не «пойманной» электрофильтрами.

    Сточные воды ТЭС и ливневые стоки с их территорий, загрязненные отходами технологических циклов энергоустановок и содержащие ванадий, никель, фтор, фенолы и нефтепродукты, при сбросе в водоемы могут оказать влияние на качество воды, водные организмы. Изменение химического состава тех или иных веществ приводит к нарушению установившихся в водоеме условий обитания и сказывается на видовом составе и численности водных организмов и бактерий и в конечном счете может привести к нарушениям процессов самоочищения водоемов от загрязнений и к ухудшению их санитарного состояния.

    Представляет опасность и так называемое тепловое загрязнение водоемов с многообразными нарушениями их состояния. ТЭС производят энергию при помощи турбин, приводимых в движение нагретым паром. При работе турбин необходимо охлаждать водой отработанный пар, поэтому от энергетической станции непрерывно отходит поток воды, подогретой обычно на 8-12 °С и сбрасываемой в водоем. Крупные ТЭС нуждаются в больших объемах воды. Они сбрасывают в подогретом состоянии 80-90 м 3 /с воды. Это означает, что в водоем непрерывно поступает мощный поток теплой воды примерно такого масштаба, как река Москва.

    Зона подогрева, образующаяся в месте впадения теплой «реки», представляет собой своеобразный участок водоема, в котором температура максимальна в точке водосброса и уменьшается по мере удаления от нее. Зоны подогрева крупных ТЭС занимают площадь в несколько десятков квадратных километров. Зимой в зоне подогрева образуются полыньи (в северных и средних широтах). В летние месяцы температуры в зонах подогрева зависят от естественной температуры забираемой воды. Если в водоеме температура воды 20 °С, то в зоне подогрева она может достигнуть 28-32°С.

    В результате повышения температур в водоеме и нарушения их естественного гидротермического режима интенсифицируются процессы «цветения» воды, уменьшается способность газов растворяться в воде, меняются физические свойства воды, ускоряются все химические и биологические процессы, протекающие в ней, и т. д. В зоне подогрева снижается прозрачность воды, увеличивается рН, увеличивается скорость разложения легко окисляющихся веществ. Скорость фотосинтеза в такой воде заметно понижается.

    2. Экологические проблемы гидроэнергетики

    Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами - их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 кВт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств.

    Гидроэлектростанция - это комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

    Несмотря на относительную дешевизну энергии, получаемой за счет гидроресурсов, доля их в энергетическом балансе постепенно уменьшается. Это связано как с исчерпанием наиболее дешевых ресурсов, так и с большой территориальной емкостью равнинных водохранилищ. Считается, что в перспективе мировое производство энергии ГЭС не будет превышать 5% от общей.

    Одной из важнейших причин уменьшения доли энергии, получаемой на ГЭС, является мощное воздействие всех этапов строительства и эксплуатации гидросооружений на окружающую среду (табл. 3).

    По данным разных исследований, одним из важнейших воздействий гидроэнергетики на окружающую среду является отчуждение значительных площадей плодородных (пойменных) земель под водохранилища. В России, где за счет использования гидроресурсов производится не более 20% электрической энергии, при строительстве ГЭС затоплено не менее 6 млн. га земель. На их месте уничтожены естественные экосистемы.

    Значительные площади земель вблизи водохранилищ испытывают подтопление в результате повышения уровня грунтовых вод. Эти земли, как правило, переходят в категорию заболоченных. В равнинных условиях подтопленные земли могут составлять 10% и более от затопленных. Уничтожение земель и свойственных им экосистем происходит также в результате их разрушения водой (абразии) при формировании береговой линии. Абразионные процессы обычно продолжаются десятилетиями, имеют следствием переработку больших масс почвогрунтов, загрязнение вод, заиление водохранилищ. Таким образом, со строительством водохранилищ связано резкое нарушение гидрологического режима рек, свойственных им экосистем и видового состава гидробионтов.

    В водохранилищах резко усиливается прогревание вод, что интенсифицирует потерю ими кислорода и другие процессы, обусловливаемые тепловым загрязнением. Последнее, совместно с накоплением биогенных веществ, создает условия для зарастания водоемов и интенсивного развития водорослей, в том числе и ядовитых сине-зеленых. По этим причинам, а также вследствие медленной обновляемости вод резко снижается их способность к самоочищению.

    Ухудшение качества воды ведет к гибели многих ее обитателей. Возрастает заболеваемость рыбного стада, особенно поражаемость гельминтами. Снижаются вкусовые качества обитателей водной среды.

    Нарушаются пути миграции рыб, идет разрушение кормовых угодий, нерестилищ и т. п. Волга во многом потеряла свое значение как нерестилище для осетровых Каспия после строительства на ней каскада ГЭС.

    В конечном счете, перекрытые водохранилищами речные системы из транзитных превращаются в транзитно-аккумулятивные. Кроме биогенных веществ здесь аккумулируются тяжелые металлы, радиоактивные элементы и многие ядохимикаты с длительным периодом жизни. Продукты аккумуляции делают проблематичной возможность использования территорий, занимаемых водохранилищами, после их ликвидации.

    Водохранилища оказывают заметное влияние на атмосферные процессы. Например, в засушливых (аридных) районах испарение с поверхности водохранилищ превышает испарение с равновеликой поверхности суши в десятки раз.

    С повышенным испарением связано понижение температуры воздуха, увеличение туманных явлений. Различие тепловых балансов водохранилищ и прилегающей суши обусловливает формирование местных ветров типа бризов. Эти, а также другие явления имеют следствием смену экосистем (не всегда положительную), изменение погоды. В ряде случаев в зоне водохранилищ приходится менять направление сельского хозяйства. Например, в южных районах нашей страны некоторые теплолюбивые культуры (бахчевые) не успевают вызревать, повышается заболеваемость растений, ухудшается качество продукции.

    Издержки гидростроительства для среды заметно меньше в горных районах, где водохранилища обычно невелики по площади. Однако в сейсмоопасных горных районах водохранилища могут провоцировать землетрясения. Увеличивается вероятность оползневых явлений и вероятность катастроф в результате возможного разрушения плотин. Так, в 1960 г. в Индии (штат Гунжарат) в результате прорыва плотины вода унесла 15 тысяч жизней людей.

    В силу специфики технологии использования водной энергии гидроэнергетические объекты преобразуют природные процессы на весьма длительные сроки. Например водохранилище ГЭС (или система водохранилищ в случае каскада ГЭС) может существовать десятки и сотни лет, при этом на месте естественного водотока возникает техногенный объект с искусственным регулированием природных процессов - природно-техническая система (ПТС). В данном случае задача сводится к формированию такой ПТС, которая обеспечивала бы надежное и экологически безопасное формирование комплекса. При этом соотношение между основными подсистемами ПТС (техногенным объектом и природной средой) может быть существенно различным в зависимости от выбранных приоритетов - технических, экологических, социально-экономических и др., а принцип экологической безопасности может формулироваться, например, как поддержание некоторого устойчивого состояния создаваемой ПТС.

    Эффективным способом уменьшения затопления территорий является увеличение количества ГЭС в каскаде с уменьшением на каждой ступени напора и, следовательно, зеркала водохранилищ.

    Еще одна экологическая проблема гидроэнергетики связана с оценкой качества водной среды. Имеющее место загрязнение воды вызвано не технологическими процессами производства электроэнергии на ГЭС (объемы загрязнений, поступающие со сточными водами ГЭС, составляют ничтожно малую долю в общей массе загрязнений хозяйственного комплекса), а низкое качество санитарно-технических работ при создании водохранилищ и сброс неочищенных стоков в водные объекты.

    В водохранилищах задерживается большая часть питательных веществ, приносимых реками. В теплую погоду водоросли способны массами размножаться в поверхностных слоях обогащенного питательными веществами, или эвтрофного, водохранилища. В ходе фотосинтеза водоросли потребляют питательные вещества из водохранилища и производят большое количество кислорода. Отмершие водоросли придают воде неприятный запах и вкус, покрывают толстым слоем дно и препятствуют отдыху людей на берегах водохранилищ.

    В первые годы после заполнения водохранилища в нем появляется много разложившейся растительности, а «новый» грунт может резко снизить уровень кислорода в воде. Гниение органических веществ может привести к выделению огромного количества парниковых газов -- метана и двуокиси углерода.

    Рассматривая воздействие ГЭС на окружающую среду, следует все же отметить жизнесберегающую функцию ГЭС. Так, выработка каждого млрд. кВтч электроэнергии на ГЭС вместо ТЭС приводит к уменьшению смертности населения на 100-226 чел./год.

    3. Проблемы ядерной энергетики

    Ядерная энергетика в настоящее время может рассматриваться как наиболее перспективная. Это связано как с относительно большими запасами ядерного топлива, так и со щадящим воздействием на среду. К преимуществам относится также возможность строительства АЭС, не привязываясь к месторождениям ресурсов, поскольку их транспортировка не требует существенных затрат в связи с малыми объемами. Достаточно отметить, что 0,5 кг ядерного топлива позволяет получать столько же энергии, сколько сжигание 1000 т каменного угля.

    Известно, что процессы, лежащие в основе получения энергии на АЭС - реакции деления атомных ядер - гораздо более опасны, чем, например, процессы горения. Именно поэтому ядерная энергетика впервые в истории развития промышленности при получении энергии реализует принцип максимальной безопасности при наибольшей возможной производительности.

    Многолетний опыт эксплуатации АЭС во всех странах показывает, что они не оказывают заметного влияния на окружающую среду. К 2000 г. среднее время эксплуатации АЭС составило 20 лет. Надежность, безопасность и экономическая эффективность атомных электростанций опирается не только на жесткую регламентацию процесса функционирования АЭС, но и на сведение до абсолютного минимума влияния АЭС на окружающую среду.

    В табл. 4 представлены сравнительные данные АЭС и ТЭС по расходу топлива и загрязнению окружающей среды за год при мощности по 1000 МВт.

    Расход топлива и загрязнение окружающей среды

    При нормальной работе АЭС выбросы радиоактивных элементов в окружающую среду крайне незначительны. В среднем, они в 2-4 раза меньше, чем от ТЭС одинаковой мощности.

    К маю 1986 г. 400 энергоблоков, работавших в мире и дававших более 17% электроэнергии, увеличили природный фон радиоактивности не более чем на 0,02%. До Чернобыльской катастрофы в нашей стране никакая отрасль производства не имела меньшего уровня производственного травматизма, чем АЭС. За 30 лет до трагедии при авариях, и то не по радиационным причинам, погибло 17 человек. После 1986 г. главную экологическую опасность АЭС стали связывать с возможностью аварии. Хотя вероятность их на современных АЭС и невелика, но она не исключается. К наиболее крупным авариям такого плана относится авария, случившаяся на четвертом блоке Чернобыльской АЭС.

    По различным данным, суммарный выброс продуктов деления от содержащихся в реакторе составил от 3,5% (63 кг) до 28% (50 т). Для сравнения необходимо отметить, что бомба, сброшенная на Хиросиму, дала только 740 г радиоактивного вещества.

    В результате аварии на Чернобыльской АЭС радиоактивному загрязнению подверглась территория в радиусе более 2 тыс. км, охватившая более 20 государств. В пределах бывшего СССР пострадало 11 областей, где проживает 17 млн. человек. Общая площадь загрязненных территорий превышает 8 млн. га, или 80 0000 км 2 . В России наиболее значительно пострадали Брянская, Калужская, Тульская и Орловская области. Пятна загрязнений имеются в Белгородской, Рязанской, Смоленской, Ленинградской и других областях. В результате аварии погиб 31 человек и более 200 человек получили дозу радиации, приведшую к лучевой болезни. 115 тыс. человек было эвакуировано из наиболее опасной (30-километровой) зоны сразу после аварии. Число жертв и количество эвакуированных жителей увеличивается, расширяется зона загрязнения в результате перемещения радиоактивных веществ ветром, при пожарах, с транспортом и т. п. Последствия аварии будут сказываться на жизни нескольких поколений.

    После Чернобыльской аварии во многих государствах по требованию общественности были временно прекращены или свернуты программы строительства АЭС, однако атомная энергетика продолжала развиваться в 32 странах.

    Сейчас дискуссии по вопросам приемлемости или неприемлемости ядерной энергетики пошли на спад, стало понятно, что мир не может вновь погрузиться во тьму или смириться с крайне опасным воздействием на атмосферу двуокиси углерода и прочих вредных для человека продуктов горения органического топлива. Уже в течение 1990 года 10 новых АЭС были подключены к электрическим сетям. Строительство АЭС не останавливается: по состоянию на конец 1999 г. в мире в эксплуатации находилось 436 энергоблоков АЭС по сравнению с 434, зарегистрированными в 1998 г. Общая электрическая мощность работающих в мире энергоблоков около 335 ГВт (1 ГВт = 1000 МВт = 10 9 Вт). Действующие атомные электростанции обеспечивают покрытие 7% мировых потребностей в энергии, а их доля в мировом производстве электрической энергии составляет 17%. Только в Западной Европе атомные электростанции вырабатывают в среднем около 50% всей электроэнергии.

    Если сейчас заменить все действующие в мире атомные электростанции на тепловые, мировой экономике, всей нашей планете и каждому человеку в отдельности был бы нанесен непоправимый ущерб. Этот вывод основан на том факте, что получение энергии на АЭС одновременно предотвращает ежегодный выброс в атмосферу Земли до 2300 млн т двуокиси углерода, 80 млн т диоксида серы и 35 млн т оксидов азота за счет уменьшения количества сжигаемого органического топлива на тепловых электростанциях. Кроме того, сгорая, органическое топливо (уголь, нефть) выбрасывает в атмосферу огромное количество радиоактивных веществ, содержащих, в основном, изотопы радия с периодом полураспада около 1600 лет! Извлечь все эти опасные вещества из атмосферы и обезопасить от их воздействия население Земли в этом случае не представлялось бы возможным. Вот лишь один конкретный пример. Закрытие в Швеции атомной станции Барсебек-1 привело к тому, что Швеция впервые за последние 30 лет стала импортировать электроэнергию из Дании. Экологические последствия этого таковы: на угольных электростанциях Дании было сожжено дополнительно почти 350 тыс. т угля из России и Польши, что привело к росту выбросов двуокиси углерода на 4 млн т (!) в год и значительному увеличению количества выпадающих кислотных дождей во всей южной части Швеции.

    Строительство АЭС осуществляют на расстоянии 30-35 км от крупных городов. Участок должен хорошо проветриваться, во время паводка не затопляться. Вокруг АЭС предусматривают место для санитарно-защитной зоны, в которой запрещается проживание населения.

    В РФ в настоящее время эксплуатируется 29 энергоблоков на девяти АЭС общей установленной электрической мощностью 21,24 ГВт. В 1995-2000 гг. на АЭС в России вырабатывалось более 13% всего производства электроэнергии в стране, сейчас - 14,4%. По суммарной установленной мощности АЭС Россия занимает пятое место после США, Франции, Японии и Германии. В настоящее время более 100 млрд кВт*ч, вырабатываемые ядерными энергоблоками страны, вносят значительный и необходимый вклад в энергообеспечение ее европейской части -- 22% всей производимой электроэнергии. Производимая на АЭС электроэнергия более чем на 30% дешевле, чем на тепловых электростанциях, использующих органическое топливо.

    Безопасность действующих АЭС является одной из главнейших задач российской атомной энергетики. Все планы строительства, реконструкции и модернизации атомных электростанций России реализуются только с учетом современных требований и нормативов. Исследование состояния основного оборудования действующих российских АЭС показало, что продление сроков его службы, по крайней мере, еще на 5-10 лет вполне возможно. Причем, благодаря проведению соответствующего комплекса работ по каждому энергоблоку, с сохранением высокого уровня безопасности.

    Для обеспечения дальнейшего развития атомной энергетики в России в 1998 г. принята «Программа развития атомной энергетики Российской Федерации на 1998-2000 гг. и на период до 2010 г.». В ней отмечено, что в 1999 г. АЭС России выработали на 16% больше энергии, чем в 1998 г. Для производства этого количества энергии на ТЭС потребовалось бы 36 млрд м 3 газа стоимостью 2,5 млрд долл в экспортных ценах. На 90% рост потребления энергии в стране был обеспечен за счет ее выработки на атомных электростанциях.

    Оценивая перспективы развития мировой атомной энергетики, большинство авторитетных международных организаций, связанных с исследованием глобальных топливно-энергетических проблем, предполагает, что после 2010-2020 гг. в мире вновь возрастет потребность в широком строительстве АЭС. По реалистическому варианту, прогнозируется, что в середине XXI в. около 50 стран будут располагать атомной энергетикой. При этом общая установленная электрическая мощность АЭС в мире к 2020 г. возрастет почти вдвое -- достигнет 570 ГВт, а к 2050 -- 1100 ГВт.

    4. Некоторые пути решения проблем современной энергетики

    Несомненно, что в ближайшей перспективе тепловая энергетика будет оставаться преобладающей в энергетическом балансе мира и отдельных стран. Велика вероятность увеличения доли углей и других видов менее чистого топлива в получении энергии. В этой связи рассмотрим некоторые пути и способы их использования, позволяющие существенно уменьшать отрицательное воздействие на среду. Эти способы базируются в основном на совершенствовании технологий подготовки топлива и улавливания вредных отходов. В их числе можно назвать следующие:

    1. Использование и совершенствование очистных устройств. В настоящее время на многих ТЭС улавливаются в основном твердые выбросы с помощью различного вида фильтров. Наиболее агрессивный загрязнитель - сернистый ангидрид на многих ТЭС не улавливается или улавливается в ограниченном количестве. В то же время имеются ТЭС (США, Япония), на которых производится практически полная очистка от данного загрязнителя, а также от окислов азота и других вредных полютантов. Для этого используются специальные десульфурационные (для улавливания диоксида и триоксида серы) и денитрификационные (для улавливания окислов азота) установки. Наиболее широко улавливание окислов серы и азота осуществляется посредством пропускания дымовых газов через раствор аммиака. Конечными продуктами такого процесса являются аммиачная селитра, используемая как минеральное удобрение, или раствор сульфита натрия (сырье для химической промышленности). Такими установками улавливается до 96% окислов серы и более 80% оксидов азота. Существуют и другие методы очистки от названных газов.

    2. Уменьшение поступления соединений серы в атмосферу посредством предварительного обессеривания (десульфурации) углей и других видов топлива (нефть, газ, горючие сланцы) химическими или физическими методами. Этими методами удается извлечь из топлива от 50 до 70% серы до момента его сжигания.

    3. Большие и реальные возможности уменьшения или стабилизации поступления загрязнений в среду связаны с экономией электроэнергии. Особенно велики такие возможности за счет снижения энергоемкости получаемых изделий. Например, в США на единицу получаемой продукции расходовалось в среднем в 2 раза меньше энергии, чем в бывшем СССР. В Японии такой расход был меньшим в три раза. Не менее реальна экономия энергии за счет уменьшения металлоемкости продукции, повышения ее качества и увеличения продолжительности жизни изделий. Перспективно энергосбережение за счет перехода на наукоемкие технологии, связанные с использованием компьютерных и других слаботочных устройств.

    4. Не менее значимы возможности экономии энергии в быту и на производстве за счет совершенствования изоляционных свойств зданий. Реальную экономию энергии дает замена ламп накаливания с КПД около 5% флуоресцентными, КПД которых в несколько раз выше. Крайне расточительно использование электрической энергии для получения тепла. Важно иметь в виду, что получение электрической энергии на ТЭС связано с потерей примерно 60-65% тепловой энергии, а на АЭС - не менее 70% энергии. Энергия теряется также при передаче ее по проводам на расстояние. Поэтому прямое сжигание топлива для получения тепла, особенно газа, намного рациональнее, чем через превращение его в электричество, а затем вновь в тепло.

    5. Заметно повышается также КПД топлива при его использовании вместо ТЭС на ТЭЦ. В последнем случае объекты получения энергии приближаются к местам ее потребления и тем самым уменьшаются потери, связанные с передачей на расстояние. Наряду с электроэнергией на ТЭЦ используется тепло, которое улавливается охлаждающими агентами. При этом заметно сокращается вероятность теплового загрязнения водной среды. Наиболее экономично получение энергии на небольших установках типа ТЭЦ (иогенирование) непосредственно в зданиях. В этом случае потери тепловой и электрической энергии снижаются до минимума. Такие способы в отдельных странах находят все большее применение.

    Заключение

    Итак, я попыталась осветить все аспекты такого актуального на сегодняшний день вопроса, как «Экологические проблемы, связанные с развитием энергетики». Что-то я уже знала из представленного материала, а с чем-то я столкнулась впервые.

    В заключение хочется добавить, что экологические проблемы относятся к глобальным мировым проблемам. На смену политическим, экономическим, идеологическим, военным диктатурам пришла диктатура более жестокая и беспощадная - диктатура ограниченности ресурсов биосферы. Границы в изменившемся мире определяют сегодня не политики, не пограничные патрули и не таможенная служба, а региональные экологические закономерности.

    С писок использованной литературы

    1. Акимова Т.А. Экология. - М.: «ЮНИТИ», 2000

    2. Дьяков А.Ф. Основные направления развития энергетики России. - М.: «Феникс», 2001

    3. Киселев Г.В. Проблема развития ядерной энергетики. - М.: «Знание», 1999.

    4. Хван Т.А. Промышленная экология. - М.: «Феникс», 2003

    Подобные документы

      Структура топливно-энергетического комплекса: нефтяная, угольная, газовая промышленность, электроэнергетика. Влияние энергетики на окружающую среду. Основные факторы загрязнения. Источники природного топлива. Использование альтернативной энергетики.

      презентация , добавлен 26.10.2013

      Способы получения электроэнергии и связанные с ними экологические проблемы. Решение экологических проблем для тепловых и атомных электростанций. Альтернативные источники энергии: солнца, ветра, припливов и отливов, геотермальная и энергия биомассы.

      презентация , добавлен 31.03.2015

      Воздействие объектов атомной энергетики на окружающую среду. Проблема теплового загрязнения водоемов. Ежегодные экологические модуляции зоопланктоценозов в водоеме-охладителе Ново-воронежской АЭС. необходимость комплексного мониторинга водных экосистем.

      реферат , добавлен 28.05.2015

      Нефть и газ – осадочные полезные ископаемые. Нефтеперерабатывающая и газоперерабатывающая промышленность Ханты-Мансийского Автономного Округа. Экологические проблемы, связанные с добычей нефти и газа в округе. Пути решения экологических проблем в ХМАО.

      реферат , добавлен 17.10.2007

      Сущность локальных, региональных и глобальных экологических проблемы современности. Промышленность как фактор воздействия на окружающую среду, ее влияние на различные экологические составляющие. Пути решения проблем и улучшения природопользования.

      реферат , добавлен 17.12.2009

      Анализ экологических проблем, связанных с действием топливно-энергетического комплекса и тепловых электрических станций на окружающую среду. Характер техногенного воздействия. Уровни распространения вредных выбросов. Требования к экологически чистым ТЭС.

      реферат , добавлен 20.11.2010

      Воздействие человека на окружающую среду. Основы экологических проблем. Парниковый эффект (глобальное потепление климата): история, признаки, возможные экологические последствия и пути решения проблемы. Кислотные осадки. Разрушение озонового слоя.

      курсовая работа , добавлен 15.02.2009

      Основные экологические проблемы современности. Влияние хозяйственной деятельности людей на природную среду. Пути решения экологических проблем в рамках регионов государств. Pазрушение озонового слоя, парниковый эффект, загрязнение окружающей среды.

      реферат , добавлен 26.08.2014

      Пути решения экологических проблем города: экологические проблемы и загрязнения воздушной среды, почвы, радиации, воды территории. Решение экологических проблем: приведение к санитарным нормам, уменьшение выбросов, переработка отходов.

      реферат , добавлен 30.10.2012

      Увеличение региональных экологических кризисов с развитие человеческого общества. Характерные особенности нашего времени - интенсификация и глобализация воздействия человека на окружающую его природную среду. Загрязнение литосферы, гидросферы и атмосферы.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://www.allbest.ru/

    Министерство науки Российской Федерации

    Самарский государственный аэрокосмический университет имени академика С.П. Королёва

    Кафедра экологии

    Экологические проблемы ДВС и пути их решения

    Студент Р.А. Игнатенко, гр. 233

    Преподаватель В.Н. Вякин

    Самара 2004

    Введение

    Устройства обработки топлива

    Укрощение ДВС

    Это странное слово «гибрид»

    Диметиловый эфир

    Заключение

    Введение

    углеводородный дизельный автотранспорт топливо

    На сегодняшний день одной из актуальных экологических проблем является проблема автотранспорта, т. к. двигатели внутреннего сгорания, работающие на продуктах нефтепереработки, оказывают наибольшее антропогенное воздействие на окружающую среду. Ежегодно в атмосферу Земли выбрасывается 250 млн. т. мелкодисперсных аэрозолей. Сейчас в биосфере содержится около 3 млн. химических соединений, никогда ранее не встречавшихся в природе.

    Проблема экологической безопасности при эксплуатации двигателей внутреннего сгорания требует разработки экологически чистых моторных топлив.

    Экологические проблемы использования углеводородного топлива

    Выхлопные газы двигателей внутреннего сгорания являются источником таких органических токсикантов, как фенантрен, антрацен, флуорантен, пирен, хризен, дибензпирилен и др., обладающие сильной канцерогенной активностью, а так же раздражающие кожу и слизистые оболочки дыхательных путей.

    Анализ механизмов химических реакций проходящих внутри двигателя при сгорании топлива показал, что основной причиной образования органических токсикантов является неполное сгорание топлива:

    в процессе сгорания топлива металлы, из которых состоит сплав двигателя, являются катализаторами многих химических процессов, приводящих к образованию конденсирующих ароматических соединений и их производных;

    образование сажи при неполном сгорании топлива способствует ароматизации углеводородов;

    химический состав бензина существенно определяет концентрацию образующихся конденсированных соединений.

    Наибольшую опасность представляет бензин каталитического риформинга, по причине высокой непредельности входящих в его состав углеводородов и высокого содержания ароматических углеводородов.

    Меньшую опасность представляет бензин каталитического крекинга, хотя и имеющий меньшую теплоту сгорания.

    Уменьшить выбросы органических токсикантов, образующихся при сгорании углеводородного топлива, можно несколькими способами:

    увеличить поступление кислорода в камеру сгорания топлива, что увеличит процент сгорания органических веществ;

    подавить каталитическую активность никеля и железа, входящих в состав сплава конструкции камеры сгорания, введя небольшое количество металлического свинца, являющегося каталитическим ядом для этих металлов;

    использовать топливо, в составе которого преобладают предельные углеводороды, природный газ, петролейный эфир, синтетический бензин.

    Современные методы улучшения качества дизельных топлив

    Получение дизельных топлив, соответствующих современным требованиям, возможно путем повышения качества нефтепереработки и введения пакета присадок различного назначения.

    Основными достоинствами дизельных двигателей по сравнению с другими двигателями внутреннего сгорания являются экономичность и сравнительная дешевизна топлива, поэтому их применение постоянно расширяется. Растущая во всем мире, в том числе и в России, дизелизация легкового и грузового автотранспорта требует неотложного решения вопросов повышения качества топлив, поскольку выхлопные газы ДВС стали основным источником загрязнения атмосферного воздуха.

    Правительствами индустриально развитых стран и рядом международных организаций были проведены фундаментальные исследования по выяснению влияния наиболее значимых факторов качества дизельных топлив (ДТ) на эксплуатационные характеристики двигателей и загрязнение окружающей среды продуктами сгорания. Эти работы завершились принятием новых стандартов на дизельное топливо. В частности, Всемирной топливной хартией и европейским стандартом EN 590, которые в отличие от действующего российского ГОСТа 305-82 жестко ограничивают содержание в топливе серы, ароматических и полиароматических углеводородов, вводится новый показатель "смазывающая способность топлива" и устанавливается значительно более высокий уровень цетанового числа.

    Автомобили - главная причина появления смога в крупных городах. Доля выхлопных газов достигает 4/5 от общего объема вредных выбросов в атмосферу.

    ГОСТ 305-82 перестал отвечать современным требованиям по перечисленным выше показателям, что уже сказывается на состоянии воздушного бассейна и здоровье россиян. Назрела необходимость принятия нового, обязательного для исполнения, российского стандарта, может быть, даже более жесткого, чем европейский. Такое развитие событий представляется неизбежным. Хотя производство нового топлива требует значительных усилий от нефтепереработчиков, это позволит в значительной степени решить проблемы экологической безопасности и качественной эксплуатации дизельных двигателей.

    Если сегодня основная масса отечественных ДТ, по сути, представляет собой гидроочищенный до содержания серы 0,2% продукт атмосферной перегонки нефти, то получение современных экологически чистых ДТ представляет технологически более сложную задачу, причем достижение таких показателей как цетановое число, смазывающая способность, температура застывания на сегодняшний день невозможно без введения соответствующих присадок.

    Одним из основных показателей качества ДТ является цетановое число (ЦЧ), которое служит критерием самовоспламеняемости топлива, определяет долговечность и КПД двигателя, полноту сгорания топлива и, во многом, дымность и состав отработанных газов.

    Борьба за снижение выбросов автотранспортом наиболее опасного загрязнителя - сернистых газов привела к появлению на рынке глубоко гидроочищенных малосернистых ДТ. Однако на практике оказалось, что их применение быстро выводит из строя дизельную топливную аппаратуру (топливные насосы, форсунки), т.к. с уменьшением содержания серы ниже 0,1% в результате гидроочистки резко падают смазывающие свойства топлива, обусловленные имеющимися в нем естественными гетероатомными органическими соединениями. На практике смазывающую способность ДТ определяют по диаметру пятна износа на специальной шариковой машине трения или в результате стендовых испытаний на натурных узлах или непосредственно на двигателях. Она, кстати, заметно ухудшается при введении в ДТ некоторых цетаноповышающих и депрессорных присадок из-за особенностей их химического строения.

    Улучшение экологических характеристик ДТ возможно также с помощью антидымных присадок, которые снижают количество одного из самых токсичных компонентов отработанных газов дизельных двигателей - сажи с адсорбированными на ней канцерогенными полиароматическими соединениями. Эффективность антидымных присадок зависит от типа двигателя и режима его работы. Отечественный ассортимент антидымных присадок представлен в основном растворимыми в топливе соединениями бария: ИХП-702, ИХП-706, ЭФАП-Б, ЭКО-1. Их применяют в концентрации 0,05-0,2%, возможно в комбинации с цетаноповышающими присадками (ЦПП) или другими присадками. За рубежом в последнее время отказываются от применения барийсодержащих присадок из-за определенной токсичности выносимого оксида бария.

    Применение нашли т.н. модификаторы (катализаторы) горения, представляющие собой топливорастворимые комплексы переходных металлов (прежде всего железа), которые снижают не только содержание в отработанных газах сажи, токсичных оксидов углерода и азота, но и расход топлива. В России допущены к применению присадки к дизтопливам ФК-4, Ангарад-2401 и "0010" на основе комплексных соединений железа.

    Анализ основных тенденций развития нефтепереработки показывает, что одним из наиболее эффективных способов получения современных экологически чистых дизельных топлив наряду с глубокой гидроочисткой является применение различных взаимно совместимых присадок последнего поколения, как правило, в составе пакета.

    Устройства обработки топлива

    Можно регулярно проверять и регулировать “выхлоп” на станциях техобслуживания.

    Российские ученые на протяжении многих лет работали над проблемой повышения экологической чистоты двигателей внутреннего сгорания, использующих в качестве топлива нефтепродукты (бензин, дизтопливо, мазут, керосин). Во время проведения многочисленных исследований ученые заметили, что топливо изменяет свои характеристики под воздействием электрического поля. Результаты испытаний “измененного” топлива показали, что оно способно значительно уменьшать содержание вредных веществ в выхлопных газах - и не только. Дальнейшие испытания показали, что экспериментальное топливо имеет еще несколько положительных качеств: сокращает расход топлива, повышает мощность двигателя, снижает уровень шума работы двигателя и облегчает его запуск в холодное время, очищает камеры сгорания и увеличивает срок службы силового агрегата.

    После того, как технология была запатентована, российская компания “А.М.Б. Сфера” разработала промышленные образцы нового устройства обработки топлива, которые с успехом прошли независимые стендовые и эксплуатационные испытания в ведущих научно-исследовательских институтах России и ближнего зарубежья. После этого устройства, получившие фирменное название “Сфера 2000”, были испытаны в реальных условиях на автомобилях при движении в различных циклах (городском, загородном и смешанном). В испытаниях были задействованы новые и бывшие в эксплуатации грузовые и легковые автомобили производства крупнейших отечественных и зарубежных автопроизводителей: МАЗ, ВАЗ, ГАЗ, КамАЗ, Ikarus, Mercerdes-Benz, Nissan и др.

    Конечно же, феноменальных результатов никто и не ожидал, но продемонстрированные качества позволяют говорить о реальной эффективности устройства обработки топлива “Сфера 2000”:

    уменьшение расхода топлива на бензиновых двигателях на 2-7%, на дизельных - на 5-15%;

    повышение мощности двигателя до 5%;

    снижение токсичности выхлопных газов на бензиновых двигателях СО на 20-60%, СН на 40-50%, на дизельных двигателях СО до 48%, СН до 50% и NOx до 17%.

    Укрощение ДВС

    Однако сделать автомобиль «зеленым» не так-то просто. Возьмем хотя бы двигатель внутреннего сгорания -- основной источник автомобильно-экологических проблем. Похоже, что, несмотря на все попытки, найти ему равнозначную замену в ближайшем будущем так и не удастся. А это означает, что для создания «дружелюбного» автомобиля нужно создать, прежде всего «дружелюбный» ДВС. Судя по тому, что можно было увидеть во Франкфурте, ведущие автопроизводители мира работают -- и не без успеха -- именно в этом направлении. Современная техника позволяет сделать автомобильные моторы более мощными, экономичными и экологичными. Это касается как бензиновых двигателей, так и дизелей. Примером тому могут служить разработанные специалистами Peugeot-Citroen дизели семейства HDi и бензиновые моторы серии GDI от Mitsubishi, значительно снижающие потребление топлива и улучшающие экологические параметры автомобиля.

    Некоторые производители пошли еще дальше, заменив жидкое топливо сжиженным или сжатым газом. BMW, например, и ряд других компаний выпускают такие машины уже серийно. Но, во-первых, газ тоже относится к невосполнимым ресурсам, а, во-вторых, полностью избежать загрязнения окружающей среды здесь также не удается, хотя, конечно, газовый двигатель более «чистый», чем бензиновый или дизельный. Как видим, первые шаги к обузданию «хищника» уже сделаны. Однако как волка ни корми, он все равно в лес смотрит, и каждому ясно, что вообще отказаться от использования топлива природного происхождения в ДВС или сделать его выхлопы абсолютно безвредными пока практически невозможно. А раз так, то приходится признать, что создание «дружелюбного» ДВС -- отнюдь не решение проблемы в целом, а только отсрочка, более или менее значительная.

    Сегодня модно говорить и писать об альтернативных двигателях. Одним из них по традиции считается электрический. Но и здесь все далеко не так ясно, как может показаться с первого взгляда. Действительно, сам электродвигатель атмосферы не загрязняет, да к тому же его использование позволяет избежать множества чисто инженерных проблем, связанных с эксплуатацией транспортных средств. А вот кардинально решить экологические проблемы такой мотор, к сожалению, не может. Достаточно вспомнить, что выработка электроэнергии сегодня -- дело достаточно «грязное». Производство аккумуляторов также сопряжено с использованием невосполнимых ресурсов и загрязнением -- да еще каким! -- окружающей среды. Если же к этому приплюсовать неудобства, связанные с ограниченной емкостью существующих ныне аккумуляторов, проблемами их перезарядки, а также с переработкой отслуживших свой срок батарей, то становится ясно, что электродвигатель на самом деле никакая не альтернатива, а очередной паллиатив. Разумеется, машины, оснащенные электромоторами, будут в ближайшее время появляться все чаще, но займут они, скорее всего, лишь определенную и достаточно узкую нишу. В частности, электромобили вполне уместны в роли городского транспорта. Во Франкфурте, например, японские автомобилестроители представили публике городской электрический концепт-кар Карро. Основными его потребителями должны стать инвалиды и пожилые люди, которым не по силам пользоваться обычным автомобилем. Мощность установленного на Kappo электродвигателя равна всего 0,6 кВт, что не позволяет машине развивать высокие скорости, обеспечивая тем самым дополнительные меры безопасности.

    Это странное слово «гибрид»

    Гораздо в большей степени призваны сделать автомобиль «родным и близким» так называемые «гибридные» или «смешанные» силовые установки. Идея эта не нова. Еще в начале века молодой Фердинанд Порше успешно работал над такой машиной на фирме Lohner. Принцип «гибрида» состоит в том, что сама машина приводится в движение при помощи электромотора, а энергию для него вырабатывает генератор, приводимый ДВС. Возможен и второй вариант -- оба мотора работают на то, чтобы приводить автомобиль в движение. Казалось бы, чего уж тут хорошего: недостатки электродвигателя множатся на минусы ДВС. Однако не спешите с выводами. Здесь, как в математике, умножение «минуса» на «минус» дает плюс. Дело в том, что ДВС, приводящий электрогенератор, работает все время в одном и том же режиме, а, как известно, именно изменения режима работы двигателя приводят к увеличению расхода топлива и выбросов вредных веществ в атмосферу. Кроме того, ДВС, как мы уже убедились, может быть достаточно экономичным и экологически чистым. Так что «гибриды» -- тоже шаг вперед. Целый ряд франкфуртских новинок оснащался именно такими силовыми установками. Достаточно упомянуть гибридный концепт-кар Mitsubishi SUW Advance, который расходует всего 3,6 л топлива на 100 км пробега. (Представьте, насколько уменьшаются выбросы!) Привлекли внимание посетителей и новый Honda Insight, и специально подготовленный для Европы, первый в мире серийный «гибрид» Toyota Prius, который, кстати, уже успел завоевать признание у себя на родине.

    Что касается Honda Insight, то этот автомобиль поступил в продажу уже в конце прошлого года. Машина оснащена однолитровым трехцилиндровым двигателем, потребляющим всего 3,4 л топлива на 100 км. По заявлению представителя компании, это наименьший расход топлива у серийных двигателей массового производства. При этом выброс в атмосферу двуокиси углерода составляет 80 г на один километр пробега, что также является рекордом. Да и скорость у Insight вполне приличная -- до 180 км/ч.

    Но заманчивее всего было бы одновременно отказаться от потребления топлива, получаемого из ископаемых ресурсов, и полностью уничтожить вредные выбросы. Для этого нужно всего лишь использовать в ДВС кислородно-водородную смесь. Тогда и двигатель работает довольно эффективно, и в атмосферу выбрасывается безобидный водяной пар. Достаточное же количество необходимых газов можно получить электролизом, разлагая воду на составляющие. А вот энергию для электролиза в идеале должны давать солнечные батареи. Кстати, во Франкфурте именно этой проблеме были посвящены несколько стендов в экспозициях компаний Daimler-Benz и BMW. На этих фирмах уже созданы и «кислородно-водородные» автомобили, которые успешно проходят испытания.

    Ну а последним «писком» в борьбе за «чистый» автомобиль, безусловно, являются топливные элементы, или, как их еще называют на английский манер, fuel cells. По оценкам экспертов, это фантастически перспективный источник энергии, -- этакая малогабаритная химическая электростанция, где электричество производится в результате разложения метанола на кислород и водород. Процесс весьма сложный, требующий применения самых современных технологий и материалов, а поэтому достаточно дорогой. Но игра, как говорится, стоит свеч, ведь в результате использования топливных элементов выброс в атмосферу углекислоты сокращается в два раза, а окиси азота при реакциях такого рода вообще не выделяются.

    Проблема выбросов автотранспортом в городских условиях и аспекты решения данной проблемы

    Состояние экологии одна из важнейших проблем современности. В результате своей жизнедеятельности человечество постоянно нарушает экологический баланс, происходит это при добыче полезных ископаемых, при производстве материальных и энергетических средств. Усугубляет ситуацию и то, что значительная доля загрязняющих веществ и СО выбрасывается в атмосферу в процессе эксплуатации двигателями внутреннего сгорания, применяемыми во всех сферах нашей жизни.

    В странах ЕЭС на долю автотранспорта приходится до 70% выбросов оксида углерода, до 50 % - оксида азота, до 45% - углеводородов и до 90% - свинца, и это при жестких экологических требованиях к транспорту и применяемым топливам (Евро 1-4).

    В России на долю автотранспорта приходится больше половины всех вредных выбросов в окружающую среду, которые в крупных городах - главный источник загрязнения атмосферы. В отработавших газах двигателей содержится около 280 компонентов. В среднем при пробеге 15 тыс. км за год каждый автомобиль сжигает 2 тонны топлива и около 20-30 тонн воздуха, в том числе 4,5 тонны кислорода. При этом автомобиль выбрасывает в атмосферу (кг/т): угарного газа - 700, диоксида азота - 40, несгоревших углеводородов - 230 и твердых веществ - 2-5. Кроме того, из-за применения этилированного бензина выбрасывается много весьма опасных для здоровья соединений свинца, в странах ЕЭС для решения этой проблемы в бензины с высокооктановым числом добавляют другие антидетонаторы.

    Усугубляется положение в нашей стране и тем, что львиная доля транспорта эксплуатируемого предприятиями имеет предельный физический износ. По ряду объективных факторов не происходит морального обновления подвижного состава. Связанно это, прежде всего с экономическим положением предприятий, тем, что отечественный автопаром выпускает устаревшие модели не блещущие экономичностью, экологической и санитарной безопасностью, а иностранные марки не доступны из-за цены.

    Электромобиль не роскошь, а средство выживания

    Электромобиль - транспортное средство, ведущие колеса которого приводятся от электромотора, питаемого аккумуляторными батареями. Впервые появился он в Англии и во Франции в начале 80-х годов девятнадцатого века, то есть раньше автомобилей с двигателями внутреннего сгорания. Тяговый электродвигатель в таких машинах получал питание от батарей свинцовых аккумуляторов с энергоемкостью всего 20 ватт-часов на килограмм. В общем, чтобы питать двигатель мощностью в 20 киловатт в течение часа, требовался свинцовый аккумулятор массой в 1 тонну. Поэтому с изобретением двигателя внутреннего сгорания производство автомобилей стало стремительно набирать обороты, а об электромобилях забыли до возникновения серьезных экологических проблем. Во-первых, развитие парникового эффекта с последующим необратимым изменением климата и, во-вторых, снижение иммунитета многих людей вследствие нарушения основ генетической наследственности.

    Данные проблемы были спровоцированы токсическими веществами, которые в достаточно больших количествах содержатся в отработавших газах двигателя внутреннего сгорания. Решение проблем состоит в снижении уровня токсичности отработавших газов, особенно окиси и двуокиси углерода, притом, что объем производства автомобилей нарастает.

    Ученые, проведя ряд исследований, наметили несколько направлений решения перечисленных задач, одной из которых является производство электромобилей. Это, по сути, первая технология, официально получившая статус нулевого выброса, и она уже представлена на рынке.

    Концерн General Motors одним из первых приступил к продаже серийных электромобилей массового производства. Толчком к этому послужило калифорнийское законодательство, согласно которому автопроизводители, желающие присутствовать на рынке штата Калифорния, должны поставлять 2% автомобилей с нулевыми выбросами в атмосферу.

    У нас разработкой электромобилей занимается в основном Волжский автозавод, не считая конструкторских фирм. В его арсенале «ВАЗ-2109Э», «ВАЗ-2131Э», «Эльф», «Рапан», семейство электромобилей «Гольф». Надо сказать, что эксплуатационные расходы в электромобиле существенно меньше, чем в стандартном автомобиле, требующем затраты на поддержание систем охлаждения, питания, выхлопа. Долговечность электродвигателя составляет примерно десять тысяч часов.

    Таким образом, количество операций по обслуживанию электродвигателя сведено к минимуму. Например, в двигателе постоянного тока нужно только периодически менять щетки, а вот более современный трехфазный электродвигатель и синхронный электродвигатель переменного тока практически не нуждаются в обслуживании.

    Если говорить об электромобилях вазовского производства, то там в качестве силового агрегата применяют два двигателя постоянного тока: мощностью 25кВт с крутящим моментом 110 Н*м и мощностью 40 кВт с крутящим моментом 190 Н*м. Двигатели первого типа, как правило, устанавливаются на легкие электромобили, такие, как «Гольф», «Ока Электро», «Эльф», а более мощные - на машины семейств ВАЗ-2108, ВАЗ-2109, «Ниву».

    Почему, несмотря на бесшумность, простоту управления и нулевую эмиссию электромобиль не стал массовым средством передвижения? Главная проблема заключается в несовершенстве аккумуляторных батарей: незначительный пробег от одной зарядки, длительный цикл перезарядки и высокая цена. В настоящее время делают ставку на никель-металлогидридные и литий-ионовые аккумуляторные батареи. В России уже приступили к производству опытных партий никель-металлогидридных батарей, а вот с литий-ионовыми батареями пока только идут опытные работы.

    Несмотря на эти недостатки, европейцы верят в электромобили как в средство способное очистить сильно загрязненные улицы. Станет ли электромобиль реальной альтернативой автомобилю - еще вопрос. Но его применение в мегаполисах, курортах, парках, то есть в зонах с повышенными экологическими требованиями вполне оправдано.

    Диметиловый эфир

    Одна из острейших экологических проблем больших городов - прогрессирующее загрязнение их воздушного бассейна вредными выбросами двигателей внутреннего сгорания (в Москве в 1986 г. - 870 тыс. т, в 1995 г. - 1,7 млн. т). Известные способы снижения токсичности двигателей, такие, как применение каталитической обработки выхлопных газов, использование альтернативных топлив типа метанола, этанола, природного газа не приводят к радикальному решению указанной проблемы.

    Одним из выходов может стать приспособление двигателей к работе на новом альтернативном топливе - диметиловом эфире (ДМЭ). Его благоприятные физико-химические показатели способствуют полному устранению дымности выхлопных газов и снижению их токсичности (а также шумности).

    Диметиловый эфир (CH3-O-CH3) обладает очень важными свойствами - он является газообразным при нормальных условиях и его молекулы не имеют углерод-углеродных химических связей, способствующих сажеобразованию при горении. В настоящее время ДМЭ применяется, главным образом, в качестве вытеснительного газа в аэрозольных упаковках.

    В настоящее время в ряде стран отрабатываются способы приспособления двигателей к работе на ДМЭ. К примеру, в Дании уже проводятся эксплуатационные испытания приспособленных к работе на ДМЭ городских автобусов. В нашей стране работы по переводу дизелей на ДМЭ ведутся в инициативном порядке с 1996 г. в НИИД, который имеет многолетний опыт создания дизелей специального назначения. Ожидается, что в результате этой работы будет обеспечено радикальное снижение токсичности автомобильных двигателей до уровня зарубежных норм на 2000 гг.

    Для создания экологически чистого автомобиля был использован «АМО ЗИЛ» 5301 («Бычок») с дизелем Д-245.12 производства Минского моторного завода. Двигатель, снабженный турбокомпрессором, имеет номинальную мощность 80 кВт при частоте вращения 2400 об/мин.

    Нормы токсичности отработанных газов по правилам 49 ЕЭК ООН:

    Наименование

    СО, г/кВт-ч

    СН, г/кВт-ч

    NOx, г/кВт-ч

    PT (частицы), г/кВт-ч

    Дата введения

    Показатели выбросов при работе по внешней характеристике:

    Мощность и экономичность (в энергетическом эквиваленте) двигателя при питании его ДМЭ и ДТ оказались практически одинаковыми. На всех режимах, включая режим запуска и холостого хода, двигатель устойчиво работал на ДМЭ при полностью бездымном выхлопе (коэффициент оптической плотности К=0), в то время как при работе на ДТ наблюдался типичный для дизелей уровень дымности отработавших газов, соответствующий К=17...28 %.

    Уровень абсолютных и удельных вредных выбросов при работе на ДМЭ, оцениваемый по методике Правил № 49-02 ЕЭК ООН, имел следующие особенности:

    Уровень выбросов окислов азота (NOx) на всех режимах был существенно меньше, чем на ДТ. Особенно значительная разница - снижение в 2...3 раза - наблюдалась на наиболее нагруженных режимах Ne=50...100 %.

    При нагрузке Ne=50...100 % на режиме максимального крутящего момента (n=1600 об/мин) уровень выбросов несгоревших углеводородов (СН) понижался на 20...70 % по сравнению с ДТ, а на режимах малых нагрузок (Ne=10...20 %) значительно превышал уровень на дизельном топливе, достигая 2000...3000 чнм.

    Уровень выбросов окиси углерода (СО) при работе на ДМЭ на всех режимах превышал соответствующие величины на ДТ, достигая 1000 чнм.

    По сравнению с природным газом работа двигателя на режимах внешней характеристики на ДМЭ обеспечивала уменьшение выбросов NOx - в 2,5...3,0 раза, СО - в 5...6 раз, а СН - в 3,0...3,5 раза.

    Природный газ в качестве топлива для транспортного двигателя (без использования нейтрализатора) имеет преимущества лишь по сравнению с бензином. Поэтому в программах конвертирования двигателей и перехода на газовое топливо предусматривается применение 3-ступенчатых каталитических нейтрализаторов, например, фирмы J. Matthey со степенью очистки газов: от NOх - 35...80 %, от СО - 85...95 %, от СН - 50...80 %. И только в этом случае уровень вредных выбросов приближается к достигнутому при работе на ДМЭ без дополнительной очистки отработавших газов.

    Снижения уровня выбросов СО и СН, зарегистрированного в опытах с ДМЭ на малых нагрузках, можно добиться путем оптимизации топливоподачи и воздухоснабжения. Применение каталитического нейтрализатора при работе двигателя на ДМЭ приведет к практически полному устранению вредных выбросов.

    В плане первых мероприятий по совершенствованию рабочего процесса на режимах малых нагрузок, где наблюдается повышенный уровень выбросов СО и СН, подготовлена к проверке опытная конструкция выхлопной трассы двигателя, перепускающая часть отработанных газов мимо турбокомпрессора. Кроме того, ведется дальнейшее совершенствование топливной системы грузового автомобиля.

    Проведенные исследования показали, что наиболее трудно решаемая экологическая задача значительного уменьшения выбросов окиси азота и дымности с переводом дизеля на работу на ДМЭ полностью решается. Специалисты считают, что новые жесткие нормы отработанных газов (ULEV, EURO-3) не могут быть достигнуты без применения ДМЭ.

    Заключение

    Сегодня крупные российские города, особенно такие мегаполисы, как Москва, С-Петербург, Екатеринбург и другие задыхаются в смраде выхлопных газов, извергаемого легковым и грузовым автотранспортом. Как решить эту проблему? Радикальные меры - полное запрещение движения машин - приведут к нарушению производственных и культурных связей городов и потому не приемлемы. Один из выходов - создание экологически чистого городского транспорта.

    Возможность выхода из тупиковой ситуации путем перевода городского автопарка на электротягу не является решением вопроса, так как общий коэффициент полезного действия (КПД) электромобиля (если считать его с момента получения электрической энергии до факта движения электротранспорта) примерно вдвое ниже, чем КПД современного автомобиля, оборудованного двигателем внутреннего сгорания. Таким образом, для обеспечения возможности движения городского транспорта, базирующегося на электромобилях, придется сжигать вдвое больше органического топлива, чем это требуется для обеспечения возможности движения современного парка автомобилей. На сегодняшний день единственно рациональным путем решения сложившейся проблемы является создание машин с двигателем внутреннего сгорания, работающим в режиме минимально возможных расходов топлива с минимальной токсичностью выхлопных газов. При этом понятное дело, должны сохраняться все необходимые показатели производительности транспортной единицы, будь то легковое такси или тяжелый грузовик.

    Для решения экологической проблемы транспорта необходимо создать энергоустановку (ЭУ), включающую двигатель внутреннего сгорания (ДВС) и обеспечивающую возможность работы ДВС в постоянном режиме минимального удельного расхода топлива с минимальной токсичностью выхлопа. Традиционные автомобили со ступенчатой передачей энергии от ЭУ к ведущим колесам проблемы решить принципиально не могут, поскольку регулирование скорости таких транспортных средств осуществляется за счет перевода двигателя внутреннего сгорания на частичные режимы с обязательным уходом из зоны работы с минимальными расходами топлива и минимальной токсичностью выхлопа. Большинство применяемых бесступенчатых передач также радикально проблемы не решают. Наиболее известная в инженерной практике гидромеханическая передача, также как и механическая, обеспечивает регулирование скорости транспортного средства за счет перевода двигателя внутреннего сгорания на частичные режимы с отходом от зоны минимальных расходов топлива и минимальной токсичности. К тому же несколько меньший КПД таких передач ведет к некоторому увеличению расхода топлива в сравнении со ступенчатой механической передачей.

    Список используемых источников

    1. Спектрофотометрическое определение микроколичеств свинца (II) в аэрозольных вы-бросах автотранспорта и придорожных отложениях // Г.И. Савенко, Н.М. Малахова, А.Н. Чеботарев, М.Г. Торосян, Н.Х. Копыт, А.И. Стручаев / Вестник Инженерной академии Украины, 1998. Специальный выпуск «Инжстратегия-97». - с.76-78.

    2. Саблина З.А., Гуреев А.А. Присадки к моторным топливам. - М.: Химия, 1988.- 472 с.

    3. Малахова Н.М., Никипелова Е.М., Савенко Г.И. Фотометрическое определение свинца (II) в природных объектах с его предварительным сорбционным концентрированием // Химия и технология воды. - 1990. -Т. 12, №7. - С. 627 - 629.

    4. Предельно допустимые концентрации вредных веществ в воздухе и воде. - Л.: Химия, 1985.-456с.

    Размещено на Allbest.ru

    Подобные документы

      Пути решения экологических проблем города: экологические проблемы и загрязнения воздушной среды, почвы, радиации, воды территории. Решение экологических проблем: приведение к санитарным нормам, уменьшение выбросов, переработка отходов.

      реферат , добавлен 30.10.2012

      Что такое экология. Почему ухудшается экологическое состояние окружающей среды. Главные экологические проблемы современности. Основные экологические проблемы области. Как решать экологические проблемы и предотвратить загрязнение окружающей среды.

      курсовая работа , добавлен 28.09.2014

      Эффективность использования водных ресурсов в бассейне Волги. Современные экологические проблемы загрязнения водных ресурсов Волжского бассейна и пути их решения. Геоэкологические проблемы использования ресурсов малых рек и Волго-Ахтубинской поймы.

      реферат , добавлен 30.08.2009

      Характеристика экологических проблем современности. Основные экологические проблемы исследуемой области. Анализ периодических изданий по проблеме исследования. Пути предотвращения загрязнения окружающей среды: воздуха, воды, грунта. Проблема отходов.

      курсовая работа , добавлен 06.10.2014

      Рассмотрение устройства и принципа работы тепловых четырехтактных двигателей внутреннего сгорания, отличительные особенности карбюраторных и дизельных моторов. Описание химического состава отработанных газов и воздействия выбросов на окружающую среду.

      презентация , добавлен 13.05.2011

      Необходимость нормирования экологических показателей двигателей внутреннего сгорания. Женевское соглашение, экологические стандарты различных стран мира. Требования к автомобильному топливу, сертификация ДВС в России. Пути снижения выбросов и токсичности.

      курсовая работа , добавлен 09.04.2012

      Основные экологические проблемы: разрушение природной среды, загрязнение атмосферы, почвы и воды. Проблема озонового слоя, кислотных осадков, парникового эффекта и перенаселения планеты. Пути решения недостатка энергетических и сырьевых ресурсов.

      презентация , добавлен 06.03.2015

      Основные экологические проблемы современности. Влияние хозяйственной деятельности людей на природную среду. Пути решения экологических проблем в рамках регионов государств. Pазрушение озонового слоя, парниковый эффект, загрязнение окружающей среды.

      реферат , добавлен 26.08.2014

      Атомные электростанции и экологические проблемы, возникающие при эксплуатации. Оценка риска от АЭС. Население и здоровье в зоне АЭС. Обеспечения радиационной безопасности. Судьба отработанного ядерного топлива. Последствия аварии на Чернобыльской АЭС.

      реферат , добавлен 18.01.2009

      Экологические проблемы Каспийского моря и их причины, пути решения экологических проблем. Каспийское море - уникальный водоём, его углеводородные ресурсы и биологические богатства не имеют аналогов в мире. Разработка нефтегазовых ресурсов региона.

    Поделиться: