Системы утилизации тепла. Бесплатная электроэнергия из бросового тепла - генераторы ORC

В программе комплексного использования (утилизации) углеотходов достаточно перспективной является проблема утилизации тепловых выбросов.

Разработка способов и средств борьбы с тепловыми загрязнениями окружающей среды и утилизация тепловой энергии актуальны. В отрасли затраты на топливо и энергию в среднем составляют 30% общих затрат на добычу угля. В то же время единовременные затраты (капитальные вложения) на строительство утилизационных установок, отнесенные к 1 т сэкономленного топлива, в 2--2,5 раза меньше, чем расходы на добычу первичного топлива. По оценкам специалистов эффективность капитальных вложений в производство энергии при использовании вторичных энергетических ресурсов в 2--3 раза выше чем в топливно-энергетической отрасли промышленности. Себестоимость тепла от утилизационных установок в 4--6 раз ниже, чем от энергосистем, и в 8--12 раз ниже, чем от собственных котельных отрасли.

Однако повышение уровня использования вторичных энергетических ресурсов сдерживается из-за отсутствия специального утилизационного оборудования и энергосберегающих технологий.

Использование тепловых выбросов получает все большее распространение и рассматривается как часть проблемы использования побочных или вторичных энергетических ресурсов. Отходами некоторых производств являются пары, газы, горячая вода, шлаки и другие выбросы, температура которых превышает температуру окружающей среды от нескольких градусов до 800°С, а в отдельных случаях и до 1000°С. В разнообразии температурных уровней, режимов выхода и характеристик выбросов разных производств заключена причина различного подхода к использованию тепловых выбросов. Наиболее распространена регенерация тепловых выбросов (возвращение теплоты в технологические процессы) или их утилизация для других целей.

Наиболее широко тепловые выбросы используются в черной металлургии, химической и нефтехимической промышленности, цветной металлургии и машиностроении. Широко изучаются возможности дальнейшего расширения их использования. Аппараты и технологии утилизации тепловых выбросов получили применение на предприятиях теплоэнергетики, на цементных заводах и других предприятиях.

В числе практических мероприятий по использованию сбросного тепла энергетических объектов можно назвать действующую в Москве опытно-промышленную теплицу с плоской водонаполненной кровлей, по которой стекает вода из градирни при температуре 32--42 °С. При расходе воды 100 дм3/м2*ч температура в теплице поддерживается на уровне 22--24°С.

Изучаются возможности использования сбросов тепловых и атомных электростанций для орошения подогретой водой сельскохозяйственных угодий, продления навигации на замерзающих реках, для опреснительных установок и т. п.

Ряд организаций разрабатывает теплоиспользующие холодильные машины, теплообменники с использованием низкокипящих рабочих тел и другие установки, направленные на утилизацию низкотемпературных (менее 150°С) газообразных и жидких выбросов предприятий химической, пищевой и перерабатывающей промышленности.

Низкопотенциальное тепло, сбрасываемое технологическими установками, может быть использовано в опреснительных установках, установках кондиционирования для теплоснабжения, а в сельском хозяйстве -- для орошения водой с более высокой температурой, что оказывает положительное влияние на урожай, для продления навигации и т.д.

Все более интенсивно изучаются возможности использования тепловых выбросов коммунально-бытового хозяйства. Важным практическим решением этих задач является сооружение заводов по сжиганию коммунально-бытовых отходов, где предусматривается комплексное использование теплоты и всех негорючих отходов.

В настоящее время значительная часть предприятий и коммунально-бытовых потребителей используют тепловую энергию в виде горячей воды, воздуха, газов и пара.

Непроизводительный расход тепловой энергии большинством потребителей связан с недостаточным учетом этого фактора при конструировании, с потреблением тепловой энергии более высоких, чем нужно, параметров и отсутствием четкого регулирования потребления, не предусмотрено полное использование теплоты, получаемой с нагретой водой, воздухом или паром. Одними из факторов экономии тепловой энергии являются использование надежной тепловой изоляции и поддержание ее в исправности. Широкие возможности снижения тепловых выбросов в промышленности возникают, если их использовать в качестве вторичных энергетических ресурсов.

Значительная экономия тепловой энергии возможна за счет улучшения эксплуатации теплопотребляющих установок и их усовершенствования, а в жилищно-коммунальном секторе -- за счет оптимизации тепловых режимов сетей теплоснабжения, улучшения теплового конструирования зданий, сокращения теплопотерь, а также за счет других мероприятий, в том числе использования термотрансформаторов -- тепловых насосов.

Велики резервы экономии энергоресурсов за счет утилизации тепла вентиляционных выбросов. Использование этого источника экономии в первую очередь зависит от обеспеченности предприятий соответствующим оборудованием. Для решения этого вопроса, в частности, предусматривается организовать производство новых видов теплоутилизационного оборудования для системы вентиляции промышленных и общественных зданий и сооружений, включая вращающиеся и пластинчатые утилизаторы с тепловыми трубами, утилизаторы с промежуточными теплоносителями и др. Вносятся необходимые изменения в строительные и технологические нормы и правила по проектированию и строительству промышленных и общественных зданий и сооружений, что позволит обеспечить широкое применение теплоутилизационного оборудования в системах вентиляции и отопления.

При утилизации теплоты отходящих газов могут происходить нагревание воздуха или воды и последующая их подача в системы вентиляции и водяного отопления.

Одним из видов вторичных энергоресурсов на промышленных предприятиях является вода, ассимилирующая теплоту от технологического оборудования (в том числе от воздушных компрессоров) и охлаждаемая затем в системах оборотного водоснабжения, Потребителями низкотемпературной теплоты могут быть системы вентиляции, воздушного отопления, кондиционирования воздуха и горячего водоснабжения.

В последнее десятилетие во многих странах мира большое внимание уделяется созданию и внедрению тепловых насосов. Особая важность этой проблемы определяется весьма крупными масштабами возможной экономии энергоресурсов. Тепловые насосы позволяют утилизировать низкопотенциальную энергию практически любых промышленных и бытовых тепловых выбросов. При этом сам тепловой насос является полностью или в значительной степени экологически чистым источником энергии. Наиболее перспективно внедрение тепловых насосов в пищевой промышленности. Здесь крупными потребителями тепловой энергии являются, например, чайные фабрики, где проводится термическая обработка зеленого листа чая -- завяливание и сушка.

Эффективная система введена в строй на одном из сыромаслозаводов недалеко от Тбилиси. Теплонасосная установка здесь заменяет как холодильную установку с градирней, так и котельную. Отбираемое от охлаждения тепло идет на пастеризацию молока.

Еще одно направление -- санитарно-курортное хозяйство. В качестве первого опыта тепловые насосы установлены в популярной здравнице Гагра. Там, как и на других курортах Черноморского побережья Грузии, котельные на угле и мазуте из экологических соображений уже давно были заменены электрокотлами. Но теперь им предстоит уступить место теплонасосным установкам, потребляющим в три-четыре раза меньше электроэнергии.

В настоящее время разработана программа перевода всей чайной промышленности Грузии, а также ряда санаториев на теплонасосную систему теплохладоснабжения. Ее эффективность с точки зрения сбережения энергоресурсов несомненна. Кроме того, она обладает и другим, чрезвычайно важным достоинством -- полностью исключается тепловое и химическое загрязнение окружающей среды.

Использование тепла сточных вод систем канализации для теплоснабжения зданий с помощью тепловых насосов дает возможность экономить природное топливо и не загрязнять окружающую среду вредными выбросами при сжигании его в традиционных котельных.

Для отопления и горячего водоснабжения жилых и общественных зданий применяются тепловые насосы парокомпрессионного типа с использованием низкопотенциального тепла сточных вод канализации.

Институтом ВНИИОСуголь определены возможные области эффективного использования тепловых насосов в угольной и горнорудной промышленности, а также источники получения тепла: компрессорные и вентиляторные установки, шахтные и сточные воды.

На основании проведенных исследований разработана природоохранная энергосберегающая технология охлаждения шахтных компрессоров с утилизацией теплоты оборотной воды с помощью тепловых насосов.

Технология предназначена для охлаждения и утилизации тепла оборотной воды стационарных шахтных компрессорных установок. Принцип действия основан на использовании холодильной машины, работающей в режиме теплового насоса, для охлаждения оборотной воды и передачи трансформируемого тепла этой воды потребителю. Горячая вода, полученная при утилизации бросового тепла, может быть использована для подпитки котлов, бытовых нужд, в тепличном хозяйстве, в системе отопления зданий.

Утилизация тепловых выбросов в угольной промышленности страны представляет собой яркий пример решения средозащитной проблемы, которое обеспечивает комплексный социально-экономический эффект, проявляющийся в повышении эффективности общественного производства и уровня жизни населения. В основе этого решения лежит создание таких энергосберегающих технологий, устройств и мероприятий, внедрение которых не требует больших капитальных вложений, а широкое их использование обеспечивает значительный экономический эффект, одновременно способствуя снижению экологической напряженности.

Экология потребления.Технологии: Тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии.

Благодаря быстрой индустриализации, мир увидел развитие целого ряда технологий, которые генерируют бросовое тепло. До сих пор это тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии. Теперь, когда физики в Университете штата Аризона находят новые способы генерации энергии за счет тепла, эта мечта на самом деле становится реальностью.

Исследовательская группа университета штата Аризоны:

Профессор физики Чарльз Стэффорд является руководителем исследовательской группы, и он вместе со своей командой работал над переработкой отходов в энергию. Результат их работы был опубликован в научном журнале ACS Nano.

Ученый и соискатель степени доктора наук в Колледже Оптических Наук Аризоны Джастин Бергфильд разделяет мнение, что "Термоэлектричество может преобразовать тепло непосредственно в электрическую энергию устройством без движущихся частей. Наши коллеги в этой области говорят, что они уверены в том, что устройство, компьютерную модель которого мы разработали, может быть построено с характеристиками, которые мы видим в нашем моделировании ".

Преимущества:

Ликвидация озоноразрушающих материалов: Использование сбросного тепла как форма электроэнергии имеет несколько преимуществ. Нужно принять во внимание, что с одной стороны теоретическая модель молекулярного термоэлектрического устройства поможет в повышении эффективности автомобилей, электростанций, заводов и панелей солнечных батарей, а с другой, что термоэлектрические материалы, такие как хлорфторуглероды (CFC), которые разрушают озоновый слой, устарели.

Более эффективная конструкция:

Руководитель исследовательской группы Чарльз Стэффорд надеется на положительный результат. Он ожидает, что разработанный ими проект термоэлектрического устройства будет лучше в 100 раз предидущих достижений. Если конструкция, которую они с командой сделали, действительно заработает, то сбудется мечта всех тех инженеров, которые хотели генерировать энергию из отходов, но не имели требуемого эффективного и экономичного устройства для этого.

Нет необходимости в механизмах:

Изобретенное Бергфильдом и Стэффордом устройство теплового преобразования не требуют каких-либо машин или озоноразрушающих химических веществ, как это было в случае с холодильниками и паровыми турбинами, которые ранее были использованы для преобразования отходов в электрическую энергию. Теперь же эта работа выполняется прослойкой резиноподобного полимера, что зажат между двумя металлами и действует как электрод. Термоэлектрические устройства являются автономными, не нуждаются в двигательных процессах, просты в изготовлении и обслуживании.

Утилизация отходов энергии:

В основном энергию вырабатывают автомобили и промышленность. Автомобильные и промышленные отходы могут быть использованы для выработки электроэнергии путем покрытия выхлопных труб тонким слоем разработанного материала. Также физики решили воспользоваться законом квантовой физики, который, впрочем, не очень часто используется, но дает отличные результаты, когда речь идет о генерации энергии из отходов.

Преимущества в сравнении с солнечной энергией:

Молекулярные термоэлектрические устройства могут помочь в генерации энергии солнца и уменьшить зависимость от фотоэлементов снизким КПД

Как это работает:

Работая с молекулами и размышляя как их использовать для термоэлектрического устройства Бергфильд и Стэффорд не нашли ничего особенного, пока один студент не обнаружил, что эти молекулы имеют свою специальную функцию. Большое количество молекул было зажато между электродами и подвергались воздействию стимулирующего источника тепла. Поток электронов вдоль молекул был разделен на две части: первая часть потока сталкивалась с бензольным кольцом, а вторая с потоком электронов вдоль каждой следующей ветви кольца.

Схема бензольного кольца была разработана таким образом, что электрон перемещается на большее расстояние по кругу, что является причиной выпадения из кольца двух электронов, достигающих друг друга в фазе на другой стороне бензольного кольца. Волны гасят друг-друга на стыке, а разрыв в потоке электрического заряда вызваный разницей температур создает напряжение между электродами.

Термоэлектрические устройства, разработанные Бергфильдом и Стэффордом могут генерировать мощность, которая зажжет 100 ваттную лампочку или повысить эффективность автомобиля на 25%.опубликовано

В наш век все более и более дорогих энергоресурсов огромное значение приобретает энергосбережение. для написаия данной статьи меня вдохновил именно тот . Здесь можно приобрести солнечную панель, которая по сути очень серьезно єкономит ваши средства. Энергосберегающие технологии внедряются везде: на предприятиях и в офисах, в частных домах и квартирах.

Энергосбережение в квартире

Энергосбережение в квартире включает в себя целый комплекс различных мероприятий: утепление стен, установка водных и газовых счетчиков, уменьшение использования электроэнергии, однако один способ сохранения тепловой энергии начал использоваться довольно недавно – утилизация тепла.

В наших квартирах, офисах и прочих помещениях практически всегда присутствуют вытяжки, позволяющие проветривать квартиры и увеличивающие скорость движения воздуха. Мало кто задумывается, но именно эти вытяжки являются одним из основных причин теплопотерь, ведь при работе вытяжки ежеминутно выдувается в воздух довольно большое количество относительно теплого воздуха, температурой 25-30 градусов, который можно использовать для вторичного использования и уменьшения теплозатрат. Для такой цели были разработаны различные системы утилизации тепла, позволяющие сократить количество утерянного тепла на 30-40% и, соответственно, повысить энергоэффективность.

Системы утилизации

Еще более весомые результаты показали системы утилизации тепла на дымоходных трубах. Вместе с дымом в каминах, дровяных и газовых печках уходит огромное количество тепловой энергии. Используя систему фильтров, возможно сохранить эту энергию и значительно увеличить коэффициент полезного действия от каминов и газовых печей.

Системы утилизации тепла используются и на промышленных объектах, где потеря тепловой энергии особо болезненна, с точки зрения экономических расходов предприятия. Особую популярность такие системы получили на теплоэлектроцентралях и крупных теплогенерирующих предприятиях. Система утилизации тепла на таком предприятии – один из важнейших системообразующих элементов предприятия, позволяющих поднять даже убыточное предприятие выше уровня рентабельности. Утилизация тепла активно используется также на атомных электростанциях нового поколения, где из кипящей воды, служащей охлаждающей жидкостью для реактора, выделяется определенное количество тепловой энергии.

Утилизация тепла

Довольно эффективно использование принципа утилизации тепла также и при охлаждении или кондиционировании помещения. Тепло, выделяющееся от работы холодильников или кондиционеров, можно утилизировать и использовать повторно по своему прямому назначению или превратив в электрическую энергию, тем самым снизив расходы на охлаждение помещений.

Утилизация тепла – одна из основ современного энергосбережения, позволяющая значительно уменьшить расходы домохозяйств, офисов и крупных промышленных предприятий. Системы утилизации помогут Вам сделать вашу энергетическую политику более грамотной и уменьшить расходы на потребление ценных энергоресурсов.



Как мы снимаем тепло с электростанции

Основным элементом системы утилизации (когенерации) тепла (СУТ) является тепловой модуль (ТМ), также называемый блоком или модулем утилизации тепла (БУТ). Именно тепловой модуль утилизирует тепло от каждой электростанции, которое объединяется с теплом от других тепловых модулей и через сборный тепловой пункт выдается потребителю. Данная система и является системой утилизации тепла. Объединение СУТ с системой охлаждения ДГУ и ГПУ (радиаторы охлаждения, они же сухие градирни, насосы и прочая обвязка) дает законченную тепломеханическую систему объекта.

Тепловой модуль позволяет в значительной степени повысить суммарный КПД - коэффициент полезного действия (коэффициент использования топлива) теплоэлектроагрегата, доведя его значение до 85-90%. Таким образом, основной задачей системы утилизации тепла является экономия затрат на выработку тепла, соответственно, внедрение СУТ в полной мере является энергосберегающей технологией.

Во время работы двигателя внутреннего сгорания (ДВС) тепловая энергия утилизируется в тепловой модуль (ТМ) следующим образом:

Утилизатор тепла антифриза (УТА) снимает тепло антифриза двигателя – вместо охлаждения антифриза на радиаторе охлаждения (сухая градирня) антифриз отдает свою тепловую энергию на нагрев воды потребителя. УТА представляет собой теплообменник кожухо-трубчатого или пластинчатого типа, работающий по схеме «вода/антифриз» либо «антифриз/антифриз» (смотря какой сетевой теплоноситель используется у заказчика).

  • Утилизатор тепла дымовых (отходящих) газов (УТГ) снимает тепло с уходящих выхлопных газов двигателя: температура уходящих дымовых газов на выходе из двигателя составляет порядка 450-550 °С, температура газов на выходе из УТГ составляет 120–180 °С. Данное понижение температуры позволяет обеспечить существенный нагрев воды потребителя. УТГ – кожухо-трубчатый теплообменник, работающий по схеме «вода/дымовые газы» либо «антифриз/дымовые газы».

Общая величина утилизируемой тепловой энергии сопоставима с вырабатываемой электроэнергией – в среднем на 100% кВт полученной электроэнергии вырабатывается 110%-130% кВт тепла.

В случае, если генератором электрической энергии является турбинная установка, в состав теплового модуля входит только утилизатор тепла дымовых газов. Тепловая мощность УТГ определяется параметрами турбины, но обычно составляет от 120% до 145% от вырабатываемой электрической энергии.

Варианты исполнения

Утилизировать тепло можно как отдельно с контуров антифриза либо выхлопных газов, так и с обоих контуров одновременно. Таким образом, получаются следующие варианты исполнения тепловых модулей:

  • Тепловой модуль в полной заводской готовности (ТМ). Состоит из двух утилизационных теплообменников, переключателя потока газов, байпасного трубопровода, трубопроводной обвязки, рамного основания, комплекта КИПиА, шкафа автоматического управления (ШАУ ТМ).
  • Тепловой модуль утилизации тепла выхлопных газов (ТМВГ). Состоит из утилизатора тепла выхлопных газов (УТГ), переключателя потоков газа с электроприводом, рамного основания, байпасной линии газовыхлопа и комплекта КИПиА.
  • Тепловой модуль утилизации тепла антифриза (ТМВВ). Включает в себя утилизатор тепла антифриза (УТА), трубопроводную обвязку, трехходовые клапаны и ШАУ ТМ (при необходимости). В тепловых модулях, утилизирующие тепло по обоим контурам, ТМВГ и ТМВВ могут располагаться как на едино раме, так и раздельно, например ТМВВ внутри контейнера, а ТМВГ на крыше, либо на разных этажах здания энергоцентра. При заказе ТМВГ либо ТМВВ в комплект поставки могут быть включены соответствующие усеченные шкафы управления.

Комплектация

Тепловой модуль в полной заводской готовности включает в себя:

Утилизатор тепла выхлопных газов (УТГ)

  • Утилизатор тепла антифриза (УТА)
  • Переключатель потоков выхлопных газов с управлением
  • Трубопроводную обвязку по линии антифриза и сетевой воды
  • Байпасный трубопровод с затворами поворотными
  • Рамное основание
  • Комплект КИПиА
  • Шкаф автоматического управления (ШАУ ТМ)

Дополнительное оборудование

  • Насосы прокачки антифриза и сетевой воды
  • Защитный кожух для установки ТМ на улице / крыше контейнера
  • Система утилизации низкопотенциального тепла
  • Сетевой теплообменник
  • Низкошумный глушитель
  • Дымовая труба

Конструктивные особенности и преимущества наших

тепловых модулей

  • Теплообменные трубки из нержавеющей стали 12х18н10т увеличивают долговечность изделия
  • Жаротрубное исполнение котлов-утилизаторов позволяет легко очищать трубки от загрязнения, конструкция жаротрубного теплообменника более компактна.
  • Компенсатор на кожухе УТГ защищает теплообменник от повреждений в случае аварийного нарушения условий эксплуатации
  • Возможность изготовления утилизаторов выхлопных газов с пониженным уровнем аэродинамического сопротивления (до 2 кПа)
  • Кожухо-трубное исполнение УТА облегчает его ремонт и очистку в условиях низкой транспортной доступности (нет необходимости заменять прокладки между пластинами)
  • На этапе согласования с заказчиком компоновки наших тепловых модулей мы согласовываем монтажные, присоединительные и габаритные параметры тепловых модулей, что обеспечивает удобных подвод сетевой воды, антифриза и дымовых газов
  • Тепловые модули изготавливаются на рабочее давление жидких сред – 0,6МПа.
  • Все тепловые модули в сборе, а также и по отдельным узлам проходят обязательные гидравлические испытания на нашем производстве. Испытательное давление – 0,8 МПа
  • Мы можем изготавливать модули на давление до 4 МПа
  • Помощь в проектировании и подборе смежных систем и оборудования
  • Гибкий подход к требованиям и пожеланиям заказчика

Зимы в России суровые, а потому к списку «примет народных» в эпоху индустриализации добавилась еще одна: если дренаж «парит», фланец подтекает, значит, технологические системы работают и не заморожены. Если нет, то, как говорится, «дело - труба» - придется систему отогревать и бороться с обледенением. В текущем столетии доступны куда более эффективные подходы к обеспечению работоспособности теплоэнергетических и технологических систем, но привычка снисходительно относиться к парящим дренажам и подтекающим фланцам осталась.

Между тем, в этом «теплоэнергетическом тумане» бесследно исчезают деньги - те, что были потрачены на выработку тепла. В условиях, когда тарифы на топливо и воду неуклонно растут, такое пренебрежение энергоресурсами - упущенная возможность в борьбе за эффективное производство.
Помимо пара к вторичным ресурсам относятся также и другие среды технологических процессов, такие как паровой конденсат после технологического оборудования и охлаждающая вода. В 8 случаях из 10 в моей практике (НПТ) на предприятиях не используется никак, а только требует дополнительных затрат на утилизацию.
О том, как трансформировать низкопотенциальное тепло в дополнительный источник экономии - эта статья.

Низкопотенциальное тепло: где искать и как использовать

В промышленности к низкопотенциальным обычно относят вторичные энергетические ресурсы, представляющие собой жидкости с температурой менее 100°С и газы с температурой ниже 300°С. На практике за верхний предел температуры для конкретного потребителя можно принять температуру источника, которая позволяет использовать его тепло на полезные цели с помощью простых, давно известных и относительно дешевых устройств - теплообменников. Нижний предел температуры источников НПТ может показаться удивительным, но современные компрессионные тепловые насосы могут извлекать тепло из атмосферного воздуха в зимнее время вплоть до температур -30°С. Совсем не «тепло», но может использоваться для отопления жилых домов и даже промышленных целей (например, отопления удаленных промышленных объектов, имеющих надежное электроснабжение и проблемы с отоплением). Диапазоны температур использования низкопотенциального тепла представлены на рисунке 1.

Рисунок 1. Пример организации схемы ступенчатого снижения давления и использования пара разных параметров.

На промышленном предприятии источники НПТ бывают «обычные», характерные для практически любого производства (теплота промышленных стоков, отработанный пар технологических агрегатов, теплота конденсата пара после технологического оборудования или поступившего в конденсаторы тепловых двигателей с турбоприводом, теплота, которая передается системе оборотного водоснабжения в результате охлаждения оборудования и обычно сбрасывается в атмосферу через градирни или напрямую в пруды-охладители) и «специфические», характерные для предприятий определенной отрасли или региона. Так, для нефтехимических и газоперерабатывающих предприятий, например, характерны потери отходящих дымовых газов технологических печей; отработанного пара от ректификационных колонн, вакуумных систем, нагревателей; и теплоты продуктовых потоков.

Как использовать это тепло? Все зависит от потребностей и задач, которые есть у вас на предприятии. Вариантов много:

  • использовать для отопления, подогрева воды для подпитки технологических систем или ее предварительной деаэрации;
  • возвращать НПТ в технологический цикл и использовать повторно в технологических процессах;
  • использовать для теплоснабжения объектов, удаленных от источников дешевого топлива;
  • получать электроэнергию с целью снижения затрат на ее покупку у стороннего поставщика или резервирования питания собственных нужд.

Результаты:

  • сокращение затрат на топливо и, соответственно, первичную выработку тепла или электроэнергии;
  • снижение затрат на покупку воды для подпитки технологических циклов, ее обработку в системах водоподготовки и подогрев ее до температур, необходимых по технологическим требованиям;
  • снижение затрат на подпиточную воду оборотного водоснабжения (испаряется в градирнях);
  • снижение выбросов СО 2 и оксидов азота за счет уменьшения количества сжигаемого топлива.

Технические решения

В настоящее время существует несколько принципиальных технологий для .

Теплонасосные установки (ТНУ)

В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы используют для извлечения НПТ тепловые источники более высокого потенциала: горячая вода, пар, отходящие газы, прямое сжигание топлива.

Компрессионные тепловые машины (КТН) в режиме работы те-
пловых насосов (ТНУ)

Рисунок 2. Принцип действия компрессионного ТН

Принцип действия КТН основан на способности низкотемпературного хладагента при кипении в условиях низкого давления отбирать тепло от источника низкотемпературного тепла. Температурный диапазон работы подбирается за счет выбора конкретного рабочего тела и диапазона рабочего давления. Для специальных промышленных установок можно получить максимальные температуры порядка 120÷140°С с использованием «каскадных» схем подключения и соответствующих хладагентов. Отдельное перспективное направление - высокотемпературные ТНУ с использованием СО 2 с закритическими параметрами.

Абсорбционные тепловые машины в режиме работы тепловых насосов (АБТН)

Принцип действия АБТН основан на способности раствора абсорбента поглощать водяные пары, имеющие более низкую температуру, чем раствор.

Наибольшее распространение получили абсорбционные тепловые машины, в качестве абсорбента использующие раствор бромида лития (LiBr). Установки обеспечивают нагрев воды до температур 60-90°С.

Такие установки могут использоваться в режиме холодильной машины (АБХМ), обеспечивая охлаждение воды (например, технологической) до температур 5-15°С независимо от температуры окружающей среды.

Рисунок 3. Принцип действия АБТМ

Установки с использованием ORC-цикла для получения электроэнергии

Главная отличительная особенность установок на базе органического цикла Ренкина (ORC) - применение органического рабочего вещества вместо водяного пара. Это повышает общий КПД теплового цикла на малых мощностях и при низкой температуре источника тепла по сравнению с классическим паровым циклом, так как температура кипения органического вещества меньше, чем у воды, а с другой стороны - ограничивает их использование на средних и больших мощностях.

Интерес к установкам с ORC значительно усилился с развитием энергетических источников на нетрадиционных видах топлива (отходы деревообработки, биотопливо), так как при их сжигании трудно обеспечить параметры теплоносителя на выходе установки, позволяющие эффективно использовать обычный пароводяной цикл.

Диаграмма 1 . Область эффективного применения установок с ORC-циклом

В настоящее время в рамках повышения энергоэффективности предприятий нефтехимической промышленности и других, применяющих в технологиях пар разных параметров, производится модернизация с заменой редукционно-охладительных установок (РОУ) на противодавленческие турбины. В качестве нижнего предела редуцирования при этом используется пар с давлением, пригодным для целей теплоснабжения. Однако потребление тепловой энергии на отопление носит сезонный характер и ограничивает возможности выработки электроэнергии турбин с противодавлением, снижая и экономическую эффективность. Применение ORC-установок позволило бы уйти от сезонной неравномерности и служить дополнительной поддержкой электропитания собственных нужд.

В последнее время указанные выше технологии все чаще используются в различных сочетаниях между собой. Например, когенерация - соединение установок выработки электроэнергии, в том числе с ORC-циклом, и оборудования для получения тепловой энергии нужных для потребителя параметров за счет утилизации низкопотенциального тепла .

Если тепловая машина в составе автономной установки электроснабжения спроектирована для работы как в режиме теплового насоса, так и в режиме «холодильника» - система генерации электроэнергии преобразуется в систему тригенерации с получением дешевой электрической энергии, тепловой энергии, а также холода.

Системы сбора и возврата конденсата на производственных предприятиях

Тепловая энергия, содержащаяся в конденсате пара после его использования в технологических цепочках предприятия должна максимально возвращаться для последующего использования. При этом сам конденсат - отличный источник для подпитки паровых технологических контуров энергопроизводящих установок, снижающий необходимость подготовки дополнительной воды.

Основные задачи при проектировании и эксплуатации систем утилизации низкопотенциального тепла

Увязать между собой имеющиеся источники НПТ и потребителей, варианты их использования с учетом потребностей на конкретном предприятии, обеспечив при этом экономическую эффективность проекта - сложная инженерная задача. Для ее решения разработка системы утилизации должна включать следующие этапы:

  • проведение предпроектного обследования энергетической системы (сбор данных и составление энергетических балансов, инструментальное обследование),
  • моделирование технологических процессов установок, эксплуатация которых приводит к максимальным энергетическим потерям (математическое моделирование, пинч-анализ),
  • анализ ресурсных ограничений при использовании НПТ, разработка вариантов и выбор оптимальных решений,
  • анализ экономических ограничений при использовании НПТ в условиях данного предприятия и разработка ТЭО.

Специфика проектирования и эксплуатационные особенности систем утилизации НПТ заключаются в том, что практические все они используют в своей работе низкокипящие хладагенты, т.е. фактически «холодильные» технологии. Неслучайно вопросы безопасности тепловых насосов включены в единый ГОСТ с холодильными машинами (ГОСТ EN 378-1-2014 Системы холодильные и тепловые насосы. Требования безопасности и охраны окружающей среды. Части 1-4). Опыт эксплуатации подобных технологий в России существенен.

Будущее технологии в России

Эффективность технологий утилизации низкопотенциального тепла не вызывает вопросов, поэтому они с каждым годом они все шире применяются во всем мире. Причины медленного внедрения их в России - экономические. Низкая стоимость энергоносителей и относительно высокая стоимость импортного оборудования обуславливают высокие сроки окупаемости «стандартных» проектов.

Однако практика показывает, что эффективная экономика проекта - это всегда вопрос индивидуального подхода и ответственного отношения исполнителя к проектированию системы и подбору оптимального оборудования и комплектующих. К тому же, сроки окупаемости сегодня рассчитываются исходя из действующих тарифов на энергоносители, тогда как грядущая либерализация тарифов на тепловую энергию, скорее всего, приведет к резкому росту энергетической составляющей в затратах предприятий.

Меньше других эта ситуация затронет те компании, которые уже сейчас начинают оптимизировать энергозатраты, в частности, благодаря повторному использованию низкопотенциального тепла.

Игорь Соколов
Ведущий эксперт компании «Первый инженер»

Поделиться: