Что такое экстремумы функции: критические точки максимума и минимума. Как найти точки минимума и максимума функции: особенности, способы и примеры

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Точки максимума и минимума являются точками экстремума функции, которые находятся по определенному алгорифму. Это является главным показателем при изыскании функции. Точка x0 является точкой минимума, если для всех x из определенной окрестности x0 выполняется неравенство f(x) ? f(x0) (для точки максимума объективно обратное неравенство f(x) ? f(x0)).

Инструкция

1. Обнаружьте производную функции. Производная характеризует метаморфоза функции в определенной точке и определяется как предел отношения приращения функции к приращению довода, тот, что тяготится к нулю. Для ее нахождения воспользуйтесь таблицей производных. Скажем, производная функции y = x3 будет равна y’ = x2.

2. Приравняйте данную производную к нулю (в данном случае x2=0).

3. Обнаружьте значение переменной данного выражения. Это будут те значения, при которых данная производная будет равна 0. Для этого подставьте в выражение произвольные цифры взамен x, при которых все выражение станет нулевым. Скажем:2-2×2= 0(1-x)(1+x) = 0x1= 1, x2 = -1

4. Полученные значения нанесите на координатную прямую и высчитайте знак производной для всего из полученных интервалов. На координатной прямой отмечаются точки, которые принимаются за предисловие отсчета. Дабы высчитать значение на интервалах подставьте произвольные значения, подходящие по критериям. Скажем, для предыдущей функции до интервала -1 дозволено предпочесть значение -2. На интервале от -1 до 1 дозволено предпочесть 0, а для значений огромнее 1 выберите 2. Подставьте данные цифры в производную и узнаете знак производной. В данном случае производная с x = -2 будет равна -0,24, т.е. негативно и на данном интервале будет стоять знак минус. Если x=0, то значение будет равно 2, а значит на данном интервале ставится позитивный знак. Если x=1, то производная также будет равна -0,24 и потому ставится минус.

5. Если при прохождении через точку на координатной прямой производная меняет свой знак с минуса на плюс, то это точка минимума, а если с плюса на минус, то это точка максимума.

Точки максимума функции наравне с точками минимума именуются точками экстремума. В этих точках функция меняет нрав поведения. Экстремумы определяются на ограниченных числовых промежутках и неизменно являются локальными.

Инструкция

1. Процесс нахождения локальных экстремумов именуется изысканием функции и выполняется путем обзора первой и 2-й производной функции. Перед началом изыскания удостоверитесь, что данный промежуток значений довода принадлежит к возможным значениям. Скажем, для функции F=1/x значение довода х=0 неприемлемо. Либо для функции Y=tg(x) довод не может иметь значение х=90°.

2. Удостоверитесь, что функция Y дифференцируема на каждому заданном отрезке. Обнаружьте первую производную Y’. Видимо, что до достижения точки локального максимума функция повышается, а при переходе через максимум функция становится убывающей. Первая производная по своему физическому смыслу характеризует скорость метаморфозы функции. Пока функция нарастает, скорость этого процесса является величиной позитивной. При переходе через локальный максимум функция начинает убывать, и скорость процесса метаморфозы функции становится негативной. Переход скорости метаморфозы функции через нуль происходит в точке локального максимума.

3. Следственно, на участке возрастания функции ее первая производная позитивна для всех значений довода на этом промежутке. И напротив - на участке убывания функции значение первой производной поменьше нуля. В точке локального максимума значение первой производной равно нулю. Видимо, дабы обнаружить локальный максимум функции, нужно обнаружить точку х?, в которой первая производная этой функции равна нулю. При любом значении довода на исследуемом отрезке хх? – негативной.

4. Для нахождения х? решите уравнение Y’=0. Значение Y(х?) будет локальным максимумом, если вторая производная функции в этой точке поменьше нуля. Обнаружьте вторую производную Y”, подставьте в полученное выражение значение довода х= х? и сравните итог вычислений с нулем.

5. Скажем, функция Y=-x?+x+1 на отрезке от -1 до 1 имеет постоянную производную Y’=-2x+1. При х=1/2 производная равна нулю, причем при переходе через эту точку производная меняет знак с «+» на «-». Вторая производная функции Y”=-2. Постройте по точкам график функции Y=-x?+x+1 и проверьте, является ли точка с абсциссой х=1/2 локальным максимумом на заданном отрезке числовой оси.

Видео по теме

Полезный совет
Для нахождения производной существуют онлайн-сервисы, которые подсчитывают надобные значения и выводят итог. На таких сайтах дозволено обнаружить производную до 5 порядка.

Функция и исследование ее особенностей занимает одно из ключевых глав в современной математике. Главная составляющая любой функции - это графики, изображающие не только ее свойства, но также и параметры производной данной функции. Давайте разберемся в этой непростой теме. Итак, как лучше искать точки максимума и минимума функции?

Функция: определение

Любая переменная, которая каким-то образом зависит от значений другой величины, может называться функцией. Например, функция f(x 2) является квадратичной и определяет значения для всего множества х. Допустим, что х = 9, тогда значение нашей функции будет равно 9 2 = 81.

Функции бывают самых разных видов: логические, векторные, логарифмические, тригонометрические, числовые и другие. Их изучением занимались такие выдающиеся умы, как Лакруа, Лагранж, Лейбниц и Бернулли. Их труды служат оплотом в современных способах изучения функций. Перед тем как найти точки минимума, очень важно понять сам смысл функции и ее производной.

Производная и ее роль

Все функции находятся в зависимости от их переменных величин, а это значит, что они могут в любой момент изменить свое значение. На графике это будет изображаться как кривая, которая то опускается, то поднимается по оси ординат (это все множество чисел "y" по вертикали графика). Так вот определение точки максимума и минимума функции как раз связано с этими "колебаниями". Объясним, в чем эта взаимосвязь.

Производная любой функции изображается на графике с целью изучить ее основные характеристики и вычислить, как быстро изменяется функция (т.е. меняет свое значение в зависимости от переменной "x"). В тот момент, когда функция увеличивается, график ее производной будет также возрастать, но в любую секунду функция может начать уменьшаться, и тогда график производной будет убывать. Те точки, в которых производная переходит со знака минуса на плюс, называются точками минимума. Для того чтобы знать, как найти точки минимума, следует лучше разобраться с

Как вычислять производную?

Определение и функции подразумевает под собой несколько понятий из Вообще, само определение производной можно выразить следующим образом: это та величина, которая показывает скорость изменения функции.

Математический способ ее определения для многих учеников кажется сложным, однако на самом деле все гораздо проще. Необходимо лишь следовать стандартному плану нахождения производной любой функции. Ниже описано, как можно найти точку минимума функции, не применяя правила дифференцирования и не заучивая таблицу производных.

  1. Вычислить производную функции можно с помощью графика. Для этого необходимо изобразить саму функцию, затем взять на ней одну точку (точка А на рис.) Вертикально вниз провести линию к оси абсцисс (точка х 0), а в точке А провести касательную к графику функции. Ось абсцисс и касательная образуют некий угол а. Для вычисления значения того, насколько быстро возрастает функция, необходимо вычислить тангенс этого угла а.
  2. Получается, что тангенс угла между касательной и направлением оси х является производной функции на маленьком участке с точкой А. Данный метод считается геометрическим способом определения производной.

Способы исследования функции

В школьной программе математики возможно нахождение точки минимума функции двумя способами. Первый метод с помощью графика мы уже разобрали, а как же определить численное значение производной? Для этого потребуется выучить несколько формул, которые описывают свойства производной и помогают преобразовать переменные величины типа "х" в числа. Следующий метод является универсальным, поэтому его можно применять практически ко всем видам функций (как к геометрическим, так и логарифмическим).

  1. Необходимо приравнять функцию к функции производной, а затем упростить выражение, используя правила дифференцирования.
  2. В некоторых случаях, когда дана функция, в которой переменная "х" стоит в делителе, необходимо определить область допустимых значений, исключив из нее точку "0" (по простой причине того, что в математике ни в коем случае нельзя делить на ноль).
  3. После этого следует преобразовать изначальный вид функции в простое уравнение, приравняв все выражение к нулю. Например, если функция выглядела так: f(x) = 2x 3 +38x, то по правилам дифференцирования ее производная равна f"(x) = 3x 2 +1. Тогда преобразуем это выражение в уравнение следующего вида: 3x 2 +1 = 0.
  4. После решения уравнения и нахождения точек "х", следует изобразить их на оси абсцисс и определить, является ли производная в этих участках между отмеченными точками положительной или отрицательной. После обозначения станет ясно, в какой точке функция начинает убывать, то есть меняет знак с минуса на противоположный. Именно таким способом можно найти как точки минимума, так и максимума.

Правила дифференцирования

Самая основная составляющая в изучении функции и ее производной - это знание правил дифференцирования. Только с их помощью можно преобразовывать громоздкие выражения и большие сложные функции. Давайте ознакомимся с ними, их достаточно много, но все они весьма просты благодаря закономерным свойствам как степенных, так и логарифмических функций.

  1. Производная любой константы равна нулю (f(х) = 0). То есть производная f(х) = x 5 + х - 160 примет такой вид: f" (х) = 5x 4 +1.
  2. Производная суммы двух слагаемых: (f+w)" = f"w + fw".
  3. Производная логарифмической функции: (log a d)" = d/ln a*d. Эта формула применима ко всем видам логарифмов.
  4. Производная степени: (x n)"= n*x n-1 . Например,(9x 2)" = 9*2x = 18x.
  5. Производная синусоидальной функции: (sin a)" = cos a. Если sin угла а равен 0,5, то ее производная равна √3/2.

Точки экстремума

Мы уже разобрали, как найти точки минимума, однако существует понятие и функции. Если минимум обозначает те точки, в которых функция переходит со знака минуса на плюс, то точками максимума являются те точки на оси абсцисс, на которых производная функции меняется с плюса на противоположный - минус.

Находить точки максимума можно по вышеописанному способу, только следует учесть, что они обозначают те участки, на которых функция начинает убывать, то есть производная будет меньше нуля.

В математике принято обобщать оба понятия, заменяя их словосочетанием "точки экстремумов". Когда в задании просят определить эти точки, это значит, что необходимо вычислить производную данной функции и найти точки минимума и максимума.

77419.Найдите точку максимума функции у=х 3 –48х+17

Найдем нули производной:

Получим корни:

Определим знаки производной функции подставляя значения из интервалов в полученную производную, и изобразим на рисунке поведение функции:

Получили, что в точке –4 производная меняет свой знак в положительного на отрицательный. Таким образом, точка х=–4 это искомая точка максимума.

Ответ: –4

77423. Найдите точку максимума функции у=х 3 –3х 2 +2

Найдём производную заданной функции:

Приравняем производную к нулю и решим уравнение:

В точке х=0 производная меняет знак с положительного на отрицательный, значит это есть точка максимума.

77427. Найдите точку максимума функции у=х 3 +2х 2 +х+3

Найдём производную заданной функции:

При равняем производную к нулю и решим уравнение:

Определим знаки производной функции и изобразим на рисунке интервалы возрастания и убывания функции подставляя значения из каждого интервала в выражение производной:


В точке х=–1 производная меняет знак с положительного на отрицательный, значит это есть искомая точка максимума.

Ответ: –1

77431. Найдите точку максимума функции у=х 3 –5х 2 +7х–5

Найдём производную функции:

Найдем нули производной:

3х 2 – 10х + 7 = 0

3∙0 2 – 10∙0 + 7 = 7 > 0

3∙2 2 – 10∙2 + 7 = – 1< 0

3∙3 2 – 10∙3 + 7 = 4 > 0

В точке х = 1 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

77435. Найдите точку максимума функции у=7+12х–х 3

Найдём производную функции:

Найдем нули производной:

12 – 3х 2 = 0

Решая квадратное уравнение получим:

*Это точки возможного максимума (минимума) функции.

Построим числовую ось, отметим нули производной. Определим знаки производной, подставляя произвольное значение из каждого интервала в выражение производной функции и схематично изобразим возрастание и убывание на интервалах:

12 – 3∙(–3) 2 = –15 < 0

12 – 3∙0 2 = 12 > 0

12 – 3∙3 2 = –15 < 0

В точке х = 2 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

*Для этой же функции точкой минимума является точка х = – 2.

77439. Найдите точку максимума функции у=9х 2 –х 3

Найдём производную функции:

Найдем нули производной:

18х –3х 2 = 0

3х(6 – х) = 0

Решая уравнение получим:

*Это точки возможного максимума (минимума) функции.

Построим числовую ось, отметим нули производной. Определим знаки производной, подставляя произвольное значение из каждого интервала в выражение производной функции и схематично изобразим возрастание и убывание на интервалах:

18 (–1) –3 (–1) 2 = –21< 0

18∙1 –3∙1 2 = 15 > 0

18∙7 –3∙7 2 = –1 < 0

В точке х=6 производная меняет свой знак с положительного на отрицательный, значит это есть искомая точка максимума.

*Для этой же функции точкой минимума является точка х = 0.

Что такое экстремум функции и каково необходимое условие экстремума?

Экстремумом функции называется максимум и минимум функции.

Необходимое условие максимума и минимума (экстремума) функции следующее: если функция f(x) имеет экстремум в точке х = а, то в этой точке производная либо равна нулю, либо бесконечна, либо не существует.

Это условие необходимое, но не достаточное. Производная в точке х = а может обращаться в нуль, в бесконечность или не существовать без того, чтобы функция имела экстремум в этой точке.

Каково достаточное условие экстремума функции (максимума или минимума)?

Первое условие:

Если в достаточной близости от точки х = а производная f?(x) положительна слева от а и отрицательна справа от а, то в самой точке х = а функция f(x) имеет максимум

Если в достаточной близости от точки х = а производная f?(x) отрицательна слева от а и положительна справа от а, то в самой точке х = а функция f(x) имеет минимум при условии, что функция f(x) здесь непрерывна.

Вместо этого можно воспользоваться вторым достаточным условием экстремума функции:

Пусть в точке х = а первая производная f?(x) обращается в нуль; если при этом вторая производная f??(а) отрицательна, то функция f(x) имеет в точке x = a максимум, если положительна - то минимум.

Что такое критическая точка функции и как её найти?

Это значение аргумента функции, при котором функция имеет экстремум (т.е. максимум или минимум). Чтобы его найти, нужно найти производную функции f?(x) и, приравняв её к нулю, решить уравнение f?(x) = 0. Корни этого уравнения, а также те точки, в которых не существует производная данной функции, являются критическими точками, т. е. значениями аргумента, при которых может быть экстремум. Их можно легко определить, взглянув на график производной : нас интересуют те значения аргумента, при которых график функции пересекает ось абсцисс (ось Ох) и те, при которых график терпит разрывы.

Для примера найдём экстремум параболы .

Функция y(x) = 3x2 + 2x - 50.

Производная функции: y?(x) = 6x + 2

Решаем уравнение: y?(x) = 0

6х + 2 = 0, 6х = -2, х=-2/6 = -1/3

В данном случае критическая точка - это х0=-1/3. Именно при этом значении аргумента функция имеет экстремум . Чтобы его найти , подставляем в выражение для функции вместо «х» найдённое число:

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50,333.

Как определить максимум и минимум функции, т.е. её наибольшее и наименьшее значения?

Если знак производной при переходе через критическую точку х0 меняется с «плюса» на «минус», то х0 есть точка максимума ; если же знак производной меняется с минуса на плюс, то х0 есть точка минимума ; если знак не меняется, то в точке х0 ни максимума, ни минимума нет.

Для рассмотренного примера:

Берём произвольное значение аргумента слева от критической точки: х = -1

При х = -1 значение производной будет у?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (т.е. знак - «минус»).

Теперь берём произвольное значение аргумента справа от критической точки: х = 1

При х = 1 значение производной будет у(1) = 6*1 + 2 = 6 + 2 = 8 (т.е. знак - «плюс»).

Как видим, производная при переходе через критическую точку поменяла знак с минуса на плюс. Значит, при критическом значении х0 мы имеем точку минимума.

Наибольшее и наименьшее значение функции на интервале (на отрезке) находят по такой же процедуре, только с учетом того, что, возможно, не все критические точки будут лежать внутри указанного интервала. Те критические точки, которые находятся за пределом интервала, нужно исключить из рассмотрения. Если внутри интервала находится только одна критическая точка - в ней будет либо максимум, либо минимум. В этом случае для определения наибольшего и наименьшего значений функции учитываем также значения функции на концах интервала.

Например, найдём наибольшее и наименьшее значения функции

y(x) = 3sin(x) — 0,5х

на интервалах:

Итак, производная функции —

y?(x) = 3cos(x) — 0,5

Решаем уравнение 3cos(x) — 0,5 = 0

cos(x) = 0,5/3 = 0,16667

х = ±arccos(0,16667) + 2πk.

Находим критические точки на интервале [-9; 9]:

х = arccos(0,16667) — 2π*2 = -11,163 (не входит в интервал)

х = -arccos(0,16667) — 2π*1 = -7,687

х = arccos(0,16667) — 2π*1 = -4,88

х = -arccos(0,16667) + 2π*0 = -1,403

х = arccos(0,16667) + 2π*0 = 1,403

х = -arccos(0,16667) + 2π*1 = 4,88

х = arccos(0,16667) + 2π*1 = 7,687

х = -arccos(0,16667) + 2π*2 = 11,163 (не входит в интервал)

Находим значения функции при критических значениях аргумента:

y(-7,687) = 3cos(-7,687) — 0,5 = 0,885

y(-4,88) = 3cos(-4,88) — 0,5 = 5,398

y(-1,403) = 3cos(-1,403) — 0,5 = -2,256

y(1,403) = 3cos(1,403) — 0,5 = 2,256

y(4,88) = 3cos(4,88) — 0,5 = -5,398

y(7,687) = 3cos(7,687) — 0,5 = -0,885

Видно, что на интервале [-9; 9] наибольшее значение функция имеет при x = -4,88:

x = -4,88, у = 5,398,

а наименьшее - при х = 4,88:

x = 4,88, у = -5,398.

На интервале [-6; -3] мы имеем только одну критическую точку: х = -4,88. Значение функции при х = -4,88 равно у = 5,398.

Находим значение функции на концах интервала:

y(-6) = 3cos(-6) — 0,5 = 3,838

y(-3) = 3cos(-3) — 0,5 = 1,077

На интервале [-6; -3] имеем наибольшее значение функции

у = 5,398 при x = -4,88

наименьшее значение —

у = 1,077 при x = -3

Как найти точки перегиба графика функции и определить стороны выпуклости и вогнутости?

Чтобы найти все точки перегиба линии y = f(x), надо найти вторую производную, приравнять её к нулю (решить уравнение) и испытать все те значения х, для которых вторая производная равна нулю, бесконечна или не существует. Если при переходе через одно из этих значений вторая производная меняет знак, то график функции имеет в этой точке перегиб. Если же не меняет, то перегиба нет.

Корни уравнения f ? (x) = 0, а также возможные точки разрыва функции и второй производной разбивают область определения функции на ряд интервалов. Выпуклость на каждом их интервалов определяется знаком второй производной. Если вторая производная в точке на исследуемом интервале положительна, то линия y = f(x) обращена здесь вогнутостью кверху, а если отрицательна - то книзу.

Как найти экстремумы функции двух переменных?

Чтобы найти экстремумы функции f(x,y), дифференцируемой в области её задания, нужно:

1) найти критические точки, а для этого — решить систему уравнений

fх? (x,y) = 0, fу? (x,y) = 0

2) для каждой критической точки Р0(a;b) исследовать, остается ли неизменным знак разности

для всех точек (х;у), достаточно близких к Р0. Если разность сохраняет положительный знак, то в точке Р0 имеем минимум, если отрицательный - то максимум. Если разность не сохраняет знака, то в точке Р0 экстремума нет.

Аналогично определяют экстремумы функции при большем числе аргументов.



Какой официальный сайт группы "Бандерос"
Сайты русскоязычных хип-хоп исполнителей: mad-a.ru — официальный сайт рэп артистки MAD-A (фотографии, музыка, биография); st1m.ru - официальный сайт рэп исполнителя St1m (музыка, видео, фото, информация о концертах, новости, форум); all1.ru - официальный сайт творческого объединен

В каких случаях инспектор ДПС имеет право останавливать ТС
Исходя из положения пункта 20 статьи 13 Закона «О полиции», инспектор ДПС имеет право останавливать транспортное средство (далее — ТС), если это необходимо для выполнения возложенных на полицию обязанностей по обеспечению безопасности дорожного движения и в др. случаях (см. полный перечень ниже). Если инспектор визуально

Как защитить трудовую книжку от умышленной потери работодателем
Чтобы защитить трудовую книжку от умышленной потери (порчи) работодателем, сотруднику предприятия рекомендуется любыми законными путями получить копию трудовой, например, используя предлог для оформления кредита, и хранить ее в надежном месте. Если недобросовестный работодатель умышленно уничтожит факты трудоустройства сотрудника на его предприятие (во избежание выявления нарушений трудового законодательства во время провед

Где в интернете найти справочную всех телефонов
Сайты «Жёлтых страниц» в интернете: yellow-pages.ru — онлайн журнал справочной информации «Yellow pages»; ypag.ru — жёлтые страницы СНГ; yellowpages.rin.ru — жёлтые стра

Сколько градусов в радиане
1 минута дуги (1′) = 60 секунд дуги (60″) 1 угловой градус (1°) = 60 минут дуги (60′) = 3600 секунд дуги (3600″) 1 радиан ≈ 57,295779513° ≈ 57°17&prim


Музыка - это вид искусства. Средством передачи настроения и чувства в музыке служат специально организованные звуки. Основными элементами и выразительными средствами музыки являются: мелодия, ритм, метр, темп, динамика, тембр, гармония, инструментовка и другие. Музыка является очень хорошим средством воспитания художественного вкуса у ребенка. Музыка способна влиять на настроение,

В каких странах проводились гран-при Формулы 1 в 2005 году
В 2005 году чемпионат мира состоял из 19 гран-при, которые проводились в следующих странах: Австралия, Малайзия, Бахрейн, Сан-Марино, Испания, Монако, Канада, США, Франция, Великобритания, Германия, Венгрия, Турция, Италия, Бельгия, Бразилия, Япония, Китай. Гран-при Европы проводился в Германии (Нюрбург).Подробнее на сайте http:/

Что такое алоказия
Алоказия (Alocasia) Семейство ароидных. Родина Южная Америка. Редкое растение любящее тепличные условия (влагу и тепло) и поэтому не получившее широкого распространения среди цветоводов. Алоказия красивое комнатное растение, с крупными стреловидно-овальными (или сердцевидными) листьями, которых бывает не более 6-7. Самые распространенные в

Что означает фраза "Этот цветочек мы уже нюхали"
Фраза «Этот цветочек мы уже нюхали» употребляется в том же значении, что и известный фразеологизм «Дважды наступить на одни и те же грабли», т.е. столкнуться с уже знакомой неприятной ситуацией. Это выражение встречается в фельетоне Ильи Ильфа «Молодые дамы» (1929) в следующе

Где найти рецепт панна котты
Панна котта (Panna cotta) — это нежнейший соблазнительный десерт из сливок и желатина, который готовят в Италии, регионе Эмилия-Романья. Дословно название десерта переводится как «вареный крем» или «вареные сливки», но по существу это кремовый пудинг без или с различными добавками.

Чему равен косинус 90 градусов
Косинус — одна из тригонометрических функций, обозначется cos. В прямоугольном треугольнике косинус острого угла равен отношению катета, выходящего из этого угла (прилежащего катета), к гипотенузе.Значения косинусов для часто встречающихся углов (π — число пи, √ — корень ква

Поделиться: