Защитное отключение электроустановок. Защитное отключение

Защитное отключение - это быстродействующая защи­та, обеспечивающая автоматическое отключение электро­установки при возникновении в ней опасности поражения человека электрическим током.

настоящее время защитное отключение является наиболее эффективным электрозащитным средством. Опыт развитых зарубежных стран показывает, что массовое применение устройств защитного отключения (УЗО) обес­печило резкое снижение электротравматизма.

Защитное отключение находит все более широкое при­менение в нашей стране. Оно рекомендовано к использо­ванию в качестве одного из средств по обеспечению электробезопасности нормативными документами (НТД): ГОСТ 12.1.019-79, ГОСТ Р 50571.3-94 ПУЭ и др. В ряде случаев требуется обязательное применение УЗО в элек­троустановках зданий (см. ГОСТ Р 5066.9-94). К объектам, подлежащим оснащению УЭО, относятся: вновь стро­ящиеся, реконструируемые, капитально ремонтируемые жилые дома, общественные здания, промышленные соору­жения независимо от форм собственности и принадлеж­ности. Не допускается применение УЗО в тех случаях, когда внезапное отключение может привести по техноло­гическим причинам к возникновению ситуаций, опасных для персонала, к отключению пожарной, охранной сигна­лизации и т.п.

Основными элементами УЗО являются прибор защитного отключения и исполнительное устройство - автоматиче­ский выключатель. Прибор защитного отключения - это совокупность отдельных элементов, которые восприни­мают входной сигнал, реагируют на его изменение и при заданном значении сигнала воздействую на выключатель. Исполнительное устройство - автоматический выключа­тель, обеспечивающий отключение соответствующего участка электроустановки (электрической сети) при по­лучении сигнала от прибора защитного отключения.

Основные требования, предъявляемые к УЗО:

1) Быстродействие - время отключения (),скла­дываемое из времени действия прибора (t п) и времени действия выключателя (t в) , должно отвечать условию

Существующие конструкции приборов и аппаратов, применяемых в схемах защитного отключения, обеспечи­вают время отключения t o ткл = 0,05 - 0,2 с.

2) Высокая чувствительность - способность реагиро­вать на малые значения входных сигналов. Высокочув­ствительные устройства УЗО позволяют задавать уставки выключателям (значения входных сигналов, при которых выключатели срабатывают), обеспечивающие безопасность прикосновения человека к фазе.

3) Селективность - избирательность действия УЗО, т.е. способность отключать от сети тот участок, в котором возникла опасность поражения человека током.

4) Самоконтроль - способность реагировать на соб­ственные неисправности путем отключения защищаемого объекта является желательным свойством для УЗО.


5) Надежность - отсутствие отказов в работе, а также ложных срабатываний. Надежность должна быть до­статочно высокой, так как отказы УЗО могут создавать ситуации, связанные с поражением персонала током.

Область применения УЗО практически не ограничена: они могут применяться в сетях любого напряжения и с любым режимом нейтрали. Наибольшее распространение УЗО получили в сетях до 1000 В, где они обеспечивают безопасность при замыкании фазы на корпус, снижении сопротивления изоляции сети относительно земли ниже определенного предела, прикосновении человека к токоведущей части, находящейся под напряжением, в пере­движных электрических установках, в электроинстру­менте и др. Причем УЗО могут применятся как самостоятельные защитные устройства, так и в качестве дополнительной меры к занулению или защитному зазем­лению. Эти свойства определяются типом применяемого УЗО и параметрами защищаемой электроустановки.

Типы устройств защитного отключения. Работа элек­трической сети как в нормальном, так и в аварийном режиме сопровождается наличием определенных пара­метров, которые могут изменяться в зависимости от условий и режима работы. Степень опасности поражения человека определенным образом зависит от этих пара­метров. Следовательно, их можно использовать в ка­честве входных сигналов для УЗО.

На практике для создания УЗО используются следую­щие входные сигналы:

Потенциал корпуса относительно земли;

Ток замыкания на землю;

Напряжение нулевой последовательности;

Дифферинциальный ток (ток нулевой последователь­ности) ;

Напряжение фазы относительно земли;

Оперативный ток.

Кроме того, применяются и комбинированные уст­ройства, реагирующие на несколько входных сигналов.

Ниже рассмотрена схема и работа устройства защит­ного отключения, реагирующего на потенциал корпуса относительно земли.

Назначение УЗО данного типа - устранение опасности поражения людей током при возникновении на заземлен­ном или зануленном корпусе повышенного потенциала. Обычно эти устройства являются дополнительной мерой защиты к заземлению или занулению. Устройство сраба­тывает, если возникший на корпусе поврежденного обо­рудования потенциал φ к окажется выше потенциала φ кдоп, которое выбирается, исходя из наибольшего длительно допустимого напряжения прикосновения U пр.доп.

Датчиком в этой схеме служит реле напряжения РН,

Рис.28. Принципиальная схема УЗО, реагирующего на

потенциал корпуса, соединенного с землей с помощью вспомогательного заземлителя R воп

При замыкании фазы на заземленный (или зануленный) корпус вначале действует защитное заземление, обеспечивающее понижение напряжения на корпусе до значения U к = I з * R з,

где R з - сопротивление защитного заземления.

Если это напряжение превысит напряжение уставки реле РН U уст, то реле за счет тока I р сработает, ра­зомкнув своими контактами цепь питания магнитного пускателя МП. А силовые контакты магнитного пускате­ля, в свою очередь, обесточат поврежденное оборудова­ние, т.е. УЗО выполнит свою задачу.

Оперативное (рабочее) включение и выключение оборудо­вания осуществляется кнопками ПУСК, СТОП. Контакты БК магнитного пускателя обеспечивают его питание после отпускания кнопки ПУСК.

Достоинством этого типа УЗО является простота его схемы. К недостаткам относятся необходимость вспомогательного заземления, отсутствие самоконтроля ис­правности, неселективность отключения в случае при­соединения нескольких корпусов к одному защитному за­землителю, непостоянство уставки при изменении R воп.

Далее рассмотрим вторую схему, реагирующую на диф­ференциальный ток (или ток нулевой последователь­ности) – УЗО(Д). Эти устройства наиболее универсальны, и поэтому находят широкое применение на произ­водстве, в общественных зданиях, в жилых домах и т.д.

Защитное отключение выполняется в дополнение или взамен заземления.

Отключение осуществляется автоматами. Защитное отключение рекомендуется в тех случаях, когда безопасность не может быть обеспечена путем устройства заземления или когда его трудно выполнить.

Защитное отключение обеспечивает быстрое- не более 0,2 с автоматическое отключение установки от питающей сети при возникновении в ней опасности поражения током. Такая опасность может возникнуть при замыкании фазы на корпус электрооборудования, при снижении изоляции фаз относительно земли (повреждении изоляции, замыкании фазы на землю); при появлении в сети более высокого напряжения, при случайном прикосновении человека к токоведущим элементам, находящимся под напряжением.

Преимуществами защитного отключения являются: возможность его применения в электрических установках любого напряжения и при любом режиме нейтрали, срабатывание при малых напряжениях на корпусе - 20-40 В и быстрота отключения, равная 0,1 - 0,2 с.

Защитное отключение осуществляется посредством выключателей или контакторов, снабженных специальным отключающим реле. Существует много различных типов защитно-отключающих устройств. Схема одного из них приведена на рис. 76. Выключатель защитного отключения состоит из электромагнитной катушки, сердечник которой в обычном положении удерживает рубильник или специальный автомат включенным в сеть. Электромагнитная катушка одним выводом присоединяется к корпусу защищаемой электроустановки, а другим - к заземлителю. При достижении на корпусе защищаемой электроустановки напряжения свыше 24- 40 В через катушку электромагнита проходит ток, вследствие чего сердечник втягивается внутрь катушки и рубильник под действием пружины выключает ток, снимая напряжение с защищаемой установки.

Применения УЗО в электроустановках жилых, общественных, административных и бытовых зданий можно рассматривать только в случае питания электроприёмников от сети 380/220 с системой заземления TN-S или TN-C-S.

УЗО являются дополнительным средством защиты человека от поражения электрическим током. Кроме того, они осуществляют защиту от возгорания и пожаров, возникающих вследствие возможных повреждений изоляции, неисправностей электропроводки и электрооборудования. При нарушении нулевого уровня изоляции, прямом прикосновении к одной из токоведущих частей или при обрыве защитных проводников УЗО является практически единственным быстродействующим средством защиты человека от поражения электрическим током.

Принцип действия УЗО основан на работе дифференциального трансформатора тока.

Суммарный магнитный поток в сердечнике пропорционален разности токов в проводниках, являющихся первичными обмотками трансформатора тока. Под действием ЭДС в цепи вторичной обмотки протекает ток, пропорциональный разности первичных токов. Этот ток и приводит в действие пусковой механизм.

В нормальном рабочем режиме результирующий магнитный поток равен нулю, ток во вторичной обмотке дифференциального трансформатора также равен нулю.

Функционально УЗО можно определить как быстродействующий защитный выключатель, реагирующий на разницу токов в проводниках, подводящих электроэнергию. Если в двух словах описывать принцип работы устройства, то оно сравнивает ток, ушедший в квартиру, с током, который вернулся из квартиры. Если эти токи оказываются разными, УЗО мгновенно отключает напряжение. Это поможет избежать вреда для человека в случаях повреждения изоляции проводов, при неосторожном обращении с электропроводкой или электроприборами.

Поэтому и родилось такое техническое решение, как ферромагнитный сердечник с тремя обмотками: - “токоподводящей”, “токоотводящей”, “управляющей”.

Ток, соответствующий подаваемому на нагрузку фазному напряжению, и ток, отходящий от нагрузки в нейтральный проводник, наводят в сердечнике магнитные потоки противоположных знаков. Если никаких утечек в нагрузке и защищаемом участке проводки нет, суммарный поток будет нулевым. В противном же случае (касание, повреждение изоляции и пр.) сумма двух потоков становится отличной от нуля. Возникающий в сердечнике поток наводит электродвижущую силу в обмотке управления. К обмотке управления через прецизионное устройство фильтрования всевозможных помех подключено реле. Под воздействием возникающей в обмотке управления ЭДС реле разрывает цепи фазы и нуля.

Существуют две основные категории УЗО:

  • 1) Электронные
  • 2) Электромеханические

Электромеханические УЗО состоят из следующих основных функциональных блоков.

В качестве датчика тока используется дифференциальный трансформатор тока.

Пороговый элемент выполненный на чувствительном магнитоэлектрическом реле.

Исполнительный механизм.

Цепь тестирования, искусственно создающая дифференциальный ток, для контроля исправности устройства.

В большинстве стран мира получили распространение именно электромеханические УЗО. Данный тип УЗО сработает в случае обнаружения тока утечки при любом уровне напряжения в сети т.к. сетевое напряжение никак не влияет на формирование тока, уровень которого и является определяющим при определении момента срабатывания магнитоэлектрического элемента.

При использовании работоспособного (исправного) электромеханического УЗО гарантируется в 100% случаях срабатывание реле и соответственно отключение подачи энергии потребителю.

В электронных УЗО функции порогового элемента и, частично, исполнительного механизма выполняет электронная схема.

Электронное УЗО строится по той же схеме, что и электромеханическое. Разница заключается в том, что место чувствительного магнитоэлектрического элемента занимает элемент сравнения (компаратор, стабилитрон). Для работоспособности такой схемы понадобится выпрямитель, небольшой фильтр. Т.к. трансформатор тока нулевой последовательности - понижающий (в десятки раз), то также необходима цепочка усиления сигнала, которая кроме полезного сигнала также будет усиливать помеху (или сигнал небаланса присутствующий при нулевом токе утечки). Очевидно, что момент срабатывании реле, в данном типе УЗО, определяется не только током утечки, но и сетевым напряжением.

Забегая вперёд необходимо отметить, что стоимость электронных УЗО ниже электромеханических примерно в 10 раз.

В европейских странах подавляющее большинство УЗО - электромеханические.

Преимущества электромеханических УЗО - их полная независимость от колебаний и даже наличия напряжения в сети. Это особенно важно, поскольку в электрических сетях случается обрыв нулевого провода, в результате чего возрастает опасность поражения электротоком.

Применение электронных УЗО целесообразно, когда необходима подстраховка в целях безопасности, например в особо опасных, влажных помещениях. В некоторых странах в вилках электробытовых приборах уже встроены УЗО, это определено требованиями правил.

Для выбора УЗО с достаточной точностью необходимо учесть два параметра:

  • 1) Номинальный ток
  • 2) Ток утечки (ток срабатывания).

Номинальный ток - это тот максимальный ток, который будет протекать по вашему фазному проводу. Найти значение тока легко, зная максимальную потребляемую мощность. Необходимо поделить потребляемою мощность для худшего случая(максимальная мощность при минимальном Cos(ц)) на фазное напряжение. Не имеет смысл ставить УЗО на ток больший, чем номинальный ток автомата стоящего перед УЗО. В идеале, с запасом, берем УЗО на номинальный ток равный номинальному току автомата.

Существуют УЗО с номинальными токами 10,16,25,40 (А).

Ток утечки (ток срабатывания) - обычно10мА или 30мА если УЗО ставиться в квартиру/дом для защиты жизни человека, а 100-300мА на предприятие для предотвращения пожаров, при обгорании проводов. (ПУЭ 7-е издание п.п. 1.7.50 требует для дополнительной защиты от прямого прикосновения в электроустановках до 1 кВ применять УЗО с номинальным отключающим дифференциальным током не более 30 мА.).

Кроме УЗО, устанавливаемых на распределительном щитке, можно встретить электророзетки со встроенным УЗО. Эти устройства бывают двух видов: первый устанавливается на место существующей розетки, второй подсоединяется к имеющейся розетке, и затем уже в него включается вилка от электроприбора.

К преимуществам данных устройств можно отнести отсутствие необходимости замены в домах старой застройки электропроводку, а к недостаткам - высокую стоимость (розетки со встроенным УЗО обойдутся примерно в 3 раза дороже, чем УЗО, устанавливаемые на распределительный щит).

УЗО должно быть защищено автоматом (УЗО не предназначено для отключения больших токов.).

Существуют аппараты, совмещающие в себе функции УЗО и автомата.

Такие устройства называются УЗО-Д со встроенной защитой от сверхтоков. У этих УЗО цена традиционно выше, но в некоторых случаях без таких устройств защитного отключения обойтись невозможно.

Для наиболее эффективного применения УЗО предпочтительнее устанавливать устройства по следующей схеме:

  • а) УЗО (30 мА на защиту всей квартиры, устанавливается в щитке на лестничной клетке)
  • б) УЗО (10 мА) на каждую линию (например, на линии, питающие стиральную машину, «теплые» полы, и т.д., устанавливается в индивидуальный внутриквартирный щиток).

Удобный вариант, поскольку при возникновении какой-либо проблемы с электропроводкой или электроприборами будет отключаться только соответствующая линия, а не вся квартира.

Недостатки данной системы - более высокие затраты и необходимость иметь значительно больше свободного места. Более чем одно УЗО, как правило, удается установить лишь в индивидуальный внутриквартирный щиток, специально спроектированный для этих целей. В обычном щитке на лестничной площадке для этого, как правило, не хватает места.

Для защиты электрооборудования квартиры с применением УЗО необходимо также учесть опасность кратковременного повышения напряжения в случае кроткого замыкания, грозовом разряде на линию электропередачи, и прочих аварийных ситуациях в службе электроснабжения. В результате возможен выход из строя дорогостоящей бытовой техники.

В этом случае очень эффективно применение устройства защиты от перенапряжения совместно с УЗО. В аварийной ситуации при повышении напряжения варистор начинает сбрасывать лишнее напряжение на землю, а УЗО, обнаружив разницу между "вытекающим" и "втекающим" обратно током (разницу, соответствующую току "утечки" на землю), просто отключит сетевое питание, не допустив выхода из строя бытовых электроприборов, и варистора УЗИП. В результате, если использовать разрядник перенапряжения в комплекте с УЗО, то электросеть при повышении напряжения будет просто отключаться.

7. Задача №1

Рассчитать методами удельной мощности и светового потока потребное количество светильников с ЛЛ для общего освещения помещения с электронно-вычислительной техникой и разместить светильники на плане помещения. При этом минимальная освещенность 400 лк., высота рабочей поверхности от пола - 0,8 м; коэффициент отражения света от потолка Рп = 70...50%, стен Pс= 50% и рабочей поверхности Pр=- 30...10%.

1. Определяют высоту, м, подвеса светильника над рабочей поверхностью по формуле:

h = Н - h р- hс.

h = 3,6 - 0,8 - 0,6 = 2,2 м

где Н - высота помещения, м; hр - высота рабочей поверхности от пола;

hc - высота свеса светильника от основного потолка.

2. Вычисляют освещаемую площадь помещения, м2, по формуле:

S = 24 * 6 = 144 м 2

где A и В - длина и ширина помещения, м.

3. Для расчета освещения методом удельной мощности находим табличную удельную мощность Рm и значения величин Кт = 1,5 и Zт = 1,1. Для светильников с УПС35 -4 х 40 вначале определяют условный номер группы = 13. При этом для светильника УПС35 -4 х 40 Рm дана для Е =100 лк, поэтому следует производить ее перерасчет для Еmin по формуле:

Рm = 7,7 + 7,7*0,1 = 8,47

РУ = Рm Emin / E100

РУ = 8,47*400 / 100 = 33,88 Вт/м 2

4. Определяют суммарную мощность, Вт, для освещения заданного помещения по формуле:

Р суммарное = Ру S Kз Z / (Кт Zт)

Р суммарное = 33,88*144*1,5*1,3/ 1,5*1,1 = 5766 Вт

где Кз - коэффициент запаса, устанавливаемый Кз = 1,5; Z - коэффициент неравномерности освещения Z = 1,3

5. Находят потребное количество светильников, шт., по формуле:

Nу = Рсуммарное/ (ni РА)

Nу = 5766/4*40 =36 шт

где РА - мощность лампы в светильнике, Вт; ni - число УПС35 -4 х 40

в светильнике, шт.

6. Для расчета освещения методом светового потока вычисляют индекс помещения по формуле:

i = S / h (A + B)

i = 144/ 2,2* (24+6) = 2,2

7. Находим КПД - коэффициент полезности действия:

8. Находим световой поток заданной (принятой) лампы ФА, лм.:

9. Определяют потребное количество светильников, шт., по формуле:

Nc = 100 Emin S Kз Z / ni ФА K

Nc = 100* 400* 144*1.5*1.3/4*2200*45* 0,9 = 32

где K - коэффициент затенения для помещений с фиксированным положением работающего (конторы, чертежные и др.), равный 0,8...0,9 ; остальные обозначения расшифрованы выше.

10. Разрабатываем рациональную схему равномерного размещения светильников N в помещение.

Расстояние, м, между светильниками и рядами этих светильников определяют по формуле:

Коэффициент зависимости от кривой силы света

L = (0,6…0,8) * 2,2 = 1,32….1,76 м

l k 0.24 * L = 0,24 * (1,32…1,76) = 0,32….0,42 м

При размещении светильников УПС35 -4 х 40 располагают, как правило, рядами - параллельно рядами оборудования или оконным проемам. Поэтому определяют расстояния L и l k .

11. Если по конструктивным особенностям помещения предусматривают разрывы lp , м, между светильниками, то lp 0,5 h. В этом случае размещение светильников лучше вести через суммарную их длину l по формуле:

l = 32* 1,270 = 41 м

где lc - длина светильника, м.

12. Определяем размещения общего количества светильников в помещении, шт., по формулам:

N p = 41/24 = 1,7 2

N .c.p = N c / N p

N .c.p = 32/2 = 16 шт

N общ. = N p* N .c.p

N общ. = 2 * 16 = 32 шт

13. Проверяем фактическую освещенность по формуле:

E = 32* 4*2200*45*0,9/ 100*144*1,5*1,3 = 406 лк. 400 лк.

A -L p.c. - 2 l k / N .c.p - 1

L p.c. = l c * N .c.p

L p.c. = 1,270 * 16 = 20,32

24- 20,32 - 2*0,4 / 16-1 = 0,19 м

B - 2 l k / N .p - 1

6 - 2*0,4/ 2-1 = 5,2 м


Схема размещения светильников типа УСП 35-4х40

Подобрать необходимый вентилятор, тип и мощность электродвигателя и указать основные конструктивные решения.

  • 1. Определяем площадь помещения, где необходима механическая вентиляция:
    • S = A*B
    • S = 9*12 = 108 м 2
  • 2. Находим удельную тепловую нагрузку:

q = Q изб / S

q = 10*10 3 /108 = 92,6 Вт/ м 2 400 Вт/м 2

3. Находим расход воздуха для удаления избытка тепла:

L я = 3,6 * Q изб / 1,2*(t y - t п)

L я. т. = 3,6 * 10*10 3 / 1,2* (23-16) = 4286 м 3 /ч

L я. з. = L я. т. * 0,65

L я. з. = 4286 * 0,65 = 2786 м 3 /ч

4. Находим наличием выделяющихся вредных веществ в помещении потребный расход воздуха, м3/ч, определяют по формуле:

L вр = m вр / Cg - C n

L вр = 1,0 * 10 3 / 8,0 - 0 = 125 м 3 /ч

5. Расчет значения Lб, м3/ч, ведут по массе выделяющихся вредных веществ в данном помещении, способных к взрыву определяют по формуле:

L б = m вр /0,1* C нк - C n

L б = 1,0 * 10 3 / 0,1*20*10 3 - 0 = 0,5 м 3 /ч

6. Находим минимальный расход наружного воздуха (Lmin, м*м*м/ч), определяемому по формуле:

L min = 40 * 60 * 1,5 = 3600 м 3 /ч

Выбираем самый большой расход воздуха 4286 м 3 /ч = L n

Если L n > Lmin, то значение L n принимают как окончательное

  • 4286 > 3600.
  • 7. КТА 1-8 ЭВМ - Lв = 2000 м3/ч; Lх = 9,9 кВт.

КТА 2-5-02 - L в = 5000 м 3 /ч; L х = 24,4 кВт.

n в = L n * K в / L в

n в = 4286 * 1 / 2000 = 2,13 шт

n х = Q изб * K в / L х

n х = 10 * 1 / 9,9 = 1,012 шт

n в = 4286 * 1 / 5000 = 0,86 1 шт

n х = 10 * 1 / 24,4 = 0,41шт


Схема по размещению механической вытяжной вентиляции в помещении

Защитное отключение - вид защиты от поражения током в электроустановках, обеспечивающей автоматическое отключение всех фаз аварийного участка сети. Длительность отключения поврежденного участка сети должна быть не более 0,2 с.

Области применения защитного отключения: дополнение к защитному заземлению или занулению в электрифицированном инструменте; дополнение к занулению для отключения электрооборудования, удаленного от источника питания; мера защиты в передвижных электроустановках напряжением до 1000 В.

Сущность работы защитного отключения заключается в том, что повреждение электроустановки приводит к изменениям в сети. Например, при замыкании фазы на землю изменяется напряжение фаз относительно земли - значение фазного напряжения будет стремиться к величине линейного напряжения. При этом возникает напряжение между нейтралью источника и землей, так называемое напряжение нулевой последовательности. Снижается общее сопротивление сети относительно земли при изменении сопротивления изоляции в сторону его уменьшения и т. д.

Принцип построения схем защитного отключения заключается в том, что перечисленные режимные изменения в сети воспринимаются чувствительным элементом (датчиком) автоматического устройства как сигнальные входные величины. Датчик выполняет роль реле тока или реле напряжения. При определенном значении входной величины защитное отключение срабатывает и отключает электроустановку. Значение входной величины называют уставкой.

Структурная схема устройства защитного отключения (УЗО) представлена на рис.

Рис. Структурная схема устройства защитного отключения: Д - датчик; П - преобразователь; КПАС - канал передачи аварийного сигнала; ИО - исполнительный орган; МОП - источник опасности поражения

Датчик Д реагирует на изменение входной величины В, усиливает ее до значения KB (К - коэффициент передачи датчика) и посылает в преобразователь П.

Преобразователь служит для преобразования усиленной входной величины в аварийный сигнал КВА. Далее канал передачи аварийного сигнала КПАС передает сигнал АС с преобразователя на исполнительный орган (ИО). Исполнительный орган осуществляет защитную функцию по устранению опасности поражения - отключает электрическую сеть.

На схеме показаны участки возможных помех, влияющие на работу УЗО.

На рис. приведена принципиальная схема защитного отключения с помощью реле максимального тока.

Рис. Схема устройства защитного отключения: 1 - реле максимального тока; 2 - трансформатор тока; 3 - заземляющий провод; 4 - заземлитель; 5 - электродвигатель; 6 - контакты пускателя; 7 - блок-контакт; 8 - сердечник пускателя; 9 - рабочая катушка; 10 - кнопка опробования; 11 - вспомогательное сопротивление; 12 и 13 - кнопки останова и включения; 14 - пускатель

Катушка этого реле с нормально замкнутыми контактами подключается через трансформатор тока или непосредственно в рассечку проводника, идущего к отдельному вспомогательному или общему заземлителю.

Электродвигатель включается в работу нажатием кнопки «Пуск». При этом подается напряжение на катушку, сердечник пускателя втягивается, контакты замыкаются и включают электродвигатель в сеть. Одновременно замыкается блок-контакт, вследствие чего катушка остается под напряжением.

При замыкании на корпус одной из фаз образуется цепь тока: место повреждения - корпус - заземляющий провод - трансформатор тока - земля - емкость и сопротивление изоляции проводов неповрежденных фаз - источник питания - место повреждения. Если величина тока достигнет уставки срабатывания токового реле, реле сработает (т. е. его нормально замкнутый контакт разомкнётся) и разорвет цепь катушки магнитного пускателя. Сердечник этой катушки освободится, и пускатель отключится.

Для проверки исправности и надежности действия защитного отключения предусмотрена кнопка, при нажатии которой устройство срабатывает. Вспомогательное сопротивление ограничивает ток замыкания на корпус до необходимой величины. Предусмотрены кнопки для включения и отключения пускателя.

В систему предприятий общественного питания входит большой комплекс мобильных (инвентарных) зданий из металла или с металлическим каркасом для уличного торгово-сервисного обслуживания (закусочные, кафе и т. п.). В качестве технического средства защиты от электротравматизма и от возможного пожара в электроустановках предписано обязательное применение на этих объектах устройства защитного отключения в соответствии с требованиями ГОСТ Р50669-94 и ГОСТ Р50571.3-94.

Главгосэнергонадзор рекомендует использовать для этой цели электромеханическое устройство типа АСТРО-УЗО, принцип действия которого основан на воздействии возможных токов утечки на магнитоэлектрическую защелку, обмотка которой подключена во вторичную обмотку трансформатора тока утечки, с сердечником из специального материала. Сердечник в нормальном режиме работы электрической сети удерживает механизм расцепления во включенном состоянии. При возникновении какой-либо неисправности во вторичной обмотке трансформатора тока утечки наводится ЭДС, сердечник втягивается, происходит срабатывание магнитоэлектрической защелки, связанной с механизмом свободного расцепления контактов (отключается рубильник).

АСТРО-УЗО имеет российский сертификат соответствия. Устройство включено в Госреестр.

Устройством защитного отключения должны оснащаться не только указанные выше сооружения, но и все помещения с повышенной или особой опасностью поражения электрическим током, в том числе сауны, души, теплицы с электроподогревом и т. п.

Защитное отключение – это система защиты, автоматически отключающая электроустановку при возникновении опасности поражения человека электрическим током (при замыкании на землю, снижении сопротивления изоляции, неисправности заземления или зануления). Защитное отключение применяется тогда, когда трудно выполнить заземление или зануление, а также в дополнение к нему в некоторых случаях.

В зависимости от того, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют схемы защитного отключения: на напряжение корпуса относительно земли; на ток замыкания на землю; на напряжение или ток нулевой последовательности; на напряжение фазы относительно земли; на постоянный и переменный оперативные токи; комбинированные.

Одна из схем защитного отключения на напряжение корпуса относительно земли приведена на рис. 13.2.

Рис. 13.2. Схема защитного отключения на напряжение корпуса относительно земли

Основным элементом схемы является защитное реле РЗ. При замыкании на корпус одной фазы корпус окажется под напряжением выше допустимого, сердечник реле РЗ втягивается и замыкает цепь питания катушки автоматического выключателя АВ, в результате чего электроустановка отключается.

Достоинством схемы является простота. Недостатки: необходимость иметь вспомогательное заземление RВ; неселективность отключения в случае присоединения нескольких корпусов к одному заземлению; непостоянство уставки при изменениях сопротивления RВ. Устройства защитного отключения, реагирующие на ток нулевой последовательности, применяют для любых напряжений как с заземленной, так и с изолированной нейтралью.

Пожары и взрывы

Пожары и взрывы являются самыми распространенными чрезвычайными событиями в современном индустриальном обществе.

Наиболее часто и, как правило, с тяжелыми социальными и экономическими последствиями происходят пожары на пожароопасных и пожаровзрывоопасных объектах.

К объектам на которых наиболее возможны взрывы и пожары, относятся:

Предприятия химической, нефтеперерабатывающей и целлюлозно-бумажной промышленности;

Предприятия, использующие газо- и нефтепродукты в качестве сырья для энергоносителей;

Газо- и нефтепроводы;

Все виды транспорта, перевозящие взрыво- и пожароопасные вещества;

Топливозаправочные станции;

Предприятия пищевой промышленности;

Предприятия, использующие лакокрасочные материалы и др.

ВЗРЫВО И ПОЖАРООПАСНЫМИ веществами и смесями являются;

Взрывчатые вещества и пороха, применяемые в военных и промышленных целях, изготавливаемые на промышленных предприятиях, хранящиеся на складах отдельно и в изделиях и транспортируемые различными видами транспорта;

Смеси газообразных и сжиженных углеводородных продуктов (метана, пропана, бутана, этилена, пропилена и др.), а также сахарной, древесной, мучной и пр. пыли с воздухом;

Пары бензина, керосина, природный газ на различных транспортных средствах, топливозаправочных станциях и др.

Пожары на предприятиях могут возникать также вследствие повреждения электропроводки и машин, находящихся под напряжением, топок и отопительных систем, емкостей с легковоспламеняющимися жидкостями и т. д.

Известны также случаи взрывов и пожаров в жилых помещениях по причине неисправности и нарушения правил эксплуатации газовых плит.

Характеристика горючих веществ

Вещества, способные самостоятельно гореть после удаления источника зажигания, называются горючими в отличие от веществ, которые на воздухе не горят и называются негорючими. Промежуточное положение занимают трудно горючие вещества, которые возгораются при действии источника зажигания, но прекращают горение после удаления последнего.

Все горючие вещества делятся на следующие основные группы.

1. ГОРЮЧИЕ ГАЗЫ (ГГ) - вещества, способные образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 50° С. К горючим газам относятся индивидуальные вещества: аммиак, ацетилен, бутадиен, бутан, бутилацетат, водород, винилхлорид, изобутан, изобутилен, метан, окись углерода, пропан, пропилен, сероводород, формальдегид, а также пары легковоспламеняющихся и горючих жидкостей.

2. ЛЕГКОВОСПЛАМЕНЯЮЩИЕСЯ ЖИДКОСТИ (ЛВЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки не выше 61° С (в закрытом тигле) или 66° (в открытом). К таким жидкостям относятся индивидуальные вещества: ацетон, бензол, гексан, гептан, диметилфорамид, дифтордихлорметан, изопентан, изопропилбензол, ксилол, метиловый спирт, сероуглерод, стирол, уксусная кислота, хлорбензол, циклогексан, этилацетат, этилбензол, этиловый спирт, а также смеси и технические продукты бензин, дизельное топливо, керосин, уайтспирт, растворители.

3. ГОРЮЧИЕ ЖИДКОСТИ (ГЖ) - вещества, способные самостоятельно гореть после удаления источника зажигания и имеющие температуру вспышки выше 61° (в закрытом тигле) или 66° С (в открытом). К горючим жидкостям относятся следующие индивидуальные вещества: анилин, гексадекан, гексиловый спирт, глицерин, этиленгликоль, а также смеси и технические продукты, например, масла: трансформаторное, вазелиновое, касторовое.

4. ГОРЮЧИЕ ПЫЛИ (ГП) - твердые вещества, находящиеся в мелкодисперсном состоянии. Горючая пыль, находящаяся в воздухе (аэрозоль), способна образовывать с ним взрывчатые смеси. Осевшая на стенах, потолке, поверхностях оборудования пыль (аэрогель) пожароопасна.

Горючие пыли по степени взрыво- и пожароопасности делятся на четыре класса.

1-й класс - наиболее взрывоопасные - аэрозоли, имеющие нижний концентрационный предел воспламенения (взрываемости) (НКПВ) до 15 г/м3 (сера, нафталин, канифоль, пыль мельничная, торфяная, эбонитовая).

2-й класс - взрывоопасные - аэрозоли имеющие величину НКПВ от 15 до 65 г/м3 (алюминиевый порошок, лигнин, пыль мучная, сенная, сланцевая).

3-й класс - наиболее пожароопасные - аэрогели, имеющие величину НКПВ, большую 65 г/м3 и температуру самовоспламенения до 250° С (табачная, элеваторная пыль).

4-й класс - пожароопасные - аэрогели, имеющие величину НКПВ большую 65 г/м3 и температуру самовоспламенения, большую 250° С (древесные опилки, цинковая пыль).

В соответствии с НПБ 105-03 здания и сооружения, в которых размещаются производства, подразделяются на пять категорий.

Категория помещения Характеристика веществ и материалов находящихся (обращающихся) в помещении
А взрыво- пожароопасная Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28° С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или один с другим в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5кПа.
Б взрыво- пожароопасная Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки более 28° С, горючие жидкости в таком количестве, что могут образовывать взрывоопасные пыле- или паро-воздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.
В1 - В4 пожароопасная Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы, способные при взаимодействии с водой, кислородом воздуха или один с другим только гореть при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А или Б
Г Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени, горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива
Д Негорючие вещества и материалы в холодном состоянии

ПРИМЕРЫ производств, размещенных в помещениях категорий А, Б, В, Г и Д.

Категория А: цехи обработки и применения металлического натрия и калия, нефтеперерабатывающие и химические производства, склады бензина и баллонов для горючих газов, помещения стационарных кислотных и щелочных аккумуляторных установок, водородные станции и др.

Характер развития пожара и последующего за ним взрыва в значительной мере зависит от огнестойкости конструкций - свойства конструкций сохранять несущую и ограждающую способность в условиях пожара. В соответствии со СНиП 2.01.02.85 различают пять степеней огнестойкости зданий и сооружений: I, II, III, IV, V.

Огнестойкость строительных конструкций характеризует следующие параметры:

1) минимальный предел огнестойкости строительной конструкции - время в часах от начала воздействия огня на конструкцию до образования в ней сквозных трещин или достижения температуры 200° С на поверхности, противоположной воздействию огня.

2) максимальный предел распространения огня по строительным конструкциям определяемый визуально размер повреждения в сантиметрах, которым считается обугливание или выгорание материалов, а также оплавление термопластичных материалов за пределами зоны нагрева.

Все строительные материалы по возгораемости делятся на три группы: НЕСГОРАЕМЫЕ, ТРУДНОСГОРАЕМЫЕ и СГОРАЕМЫЕ.

К НЕСГОРАЕМЫМ материалам и конструкциям относятся применяемые в строительстве металлы и неорганические минеральные материалы и изделия из них: песок, глина, гравий, асбест, кирпич, бетон и др.

К ТРУДНОСГОРАЕМЫМ относятся материалы и изделия из них, состоящие из сгораемых и несгораемых компонентов: кирпич саманный, гипсовая сухая штукатурка, фибролит, ленолиум, эбонит и др.

К СГОРАЕМЫМ относятся все материалы органического происхождения: картон, войлок, асфальт, рубероид, толь кровельный и др.

Основные понятия о пожарах и взрывах.

ПОЖАР - это неконтролируемое горение вне специального очага, наносящее материальный ущерб.

ГОРЕНИЕ - химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Для возникновения горения необходимо наличие горючего вещества, окислителя (обычно кислорода воздуха, а также хлор, фтор, йод, бром, оксиды азота) и источника зажигания. Кроме того необходимо, чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник зажигания имел бы достаточную энергию.

ВЗРЫВ - чрезвычайно быстрое выделение энергии в ограниченном объеме, связанное с внезапным изменением состояния вещества и сопровождающееся образованием большого количества сжатых газов, способных производить механическую работу.

Взрыв является частным случаем горения. Но с горением в обычном понятии его роднит лишь то, что это окислительная реакция. Для взрыва характерны следующие особенности:

Большая скорость химического превращения;

Большое количество газообразных продуктов;

Мощное дробящее (бризантное) действие;

Сильный звуковой эффект.

Продолжительность взрыва составляет время порядка 10-5...10-6 с. Поэтому его мощность весьма велика, хотя запасы внутренней энергии у взрывчатых веществ и смесей не выше, чем у горючих веществ, сгорающих в обычных для них условиях.

При анализе взрывных явлений рассматривают две разновидности взрыва: взрывное горение и детонация.

К первому относятся взрывы топливовоздушных смесей (смеси углеводородов, паров нефтепродуктов, а также сахарной, древесной, мучной и прочей пыли с воздухом). Характерной особенностью такого взрыва является скорость горения порядка нескольких сотен м/с.

ДЕТОНАЦИЯ - весьма быстрое разложение взрывчатого вещества (газо-воздушной смеси). распространяющееся по нему со скоростью в несколько км/с и характеризующееся особенностями, присущими любому взрыву, указанному выше. Детонация характерна для военных и промышленных взрывчатых веществ, а также для топливно-воздушных смесей, находящихся в замкнутом объеме.

Отличие взрывного горения от детонации состоит в скорости разложения, у последней она на порядок выше.

В заключении следует сравнить три вида разложения: обычное горение, взрывное и детонацию.

Процессы ОБЫЧНОГО ГОРЕНИЯ протекают сравнительно медленно и с переменной скоростью - обычно от долей сантиметра до нескольких метров в секунду. Скорость горения существенно зависит от многих факторов, но, главным образом, от внешнего давления, заметно возрастая с повышением последнего. На открытом воздухе этот процесс протекает сравнительно вяло и не сопровождается сколько-нибудь значительным звуковым эффектом. В ограниченном же объеме процесс протекает значительно энергичнее, характеризуется более или менее быстрым нарастанием давления и способностью газообразных продуктов горения производить работу.

ВЗРЫВНОЕ ГОРЕНИЕ по сравнению с обычным представляет собой качественно иную форму распространения процесса. Отличительными чертами взрывного горения являются: резкий скачок давления в месте взрыва, переменная скорость распространения процесса, измеряемая сотнями метров в секунду и сравнительно мало зависящая от внешних условий. Характер действия взрыва - резкий удар газов по окружающей среде, вызывающей дробление и сильные деформации предметов на относительно небольших расстояниях от места взрыва.

ДЕТОНАЦИЯ представляет собой взрыв, распространяющийся с максимально возможной для данного вещества (смеси) и данных условий, (например, концентрацией смеси) скоростью, превышающей скорость звука в данном веществе и измеряемой тысячами метров в секунду. Детонация не отличается по характеру и сущности явления от взрывного горения, но представляет собой его стационарную форму. Скорость детонации является величиной, постоянной для данного вещества (смеси определенной концентрации). В условиях детонации достигается максимальное разрушительное действие взрыва.

УЗО (Устройство Защитного Отключения) — это коммутационный аппарат предназначенный для защиты электрической цепи от токов утечки, то есть токов протекающих по нежелательным, в нормальных условиях эксплуатации, проводящим путям, что в свою очередь обеспечивает защиту от пожаров (возгорания электропроводки) и от поражения человека электрическим током.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

УЗО так же имеет другие варианты названий, например: дифференциальный выключатель, выключатель дифференциального тока, (сокращенно выключатель диф тока) и т.п.

  1. Устройство и принцип работы УЗО

И так для наглядности представим простейшую схему подключения через УЗО лампочки:

Из схемы видно, что при нормальном режиме работы УЗО, когда его подвижные контакты замкнуты, ток I 1 величиной, к примеру, 5 Ампер от фазного провода проходит через магнитопровод УЗО, затем через лампочку, и возвращается в сеть по нулевому проводнику, так же через магнитопровод УЗО, при этом величина тока I 2 равна величине тока I 1 и составляет 5 Ампер.

В такой ситуации часть тока электрической цепи поступающая от фазного провода не будет возвращаться в сеть, а проходя через тело человека будет уходить в землю следовательно ток I 2 который будет возвращаться в сеть через магнитопровод УЗО по нулевому проводу будет меньше тока I 1 поступающего в сеть, соответственно и величина магнитного потока Ф 1 станет больше величины магнитного потока Ф 2 , в результате чего в магнитопроводе УЗО суммарный магнитный поток уже не будет равен нулю.

К примеру ток I 1 =6А, ток I 2 =5,5А, т.е. 0,5 Ампера протекает через тело человека в землю (т.е. 0,5 Ампера — ток утечки), тогда магнитный поток Ф 1 будет равен 6 условных единиц, а магнитный поток Ф 2 — 5,5 условных единиц тогда суммарный магнитный поток будет равен:

Ф сумм = Ф 1 + Ф 2 =6+(-5,5)=0,5 усл. ед.

Возникший суммарный магнитный магнитный поток индуктирует электрический ток во вторичной обмотке который проходя через магнитоэлектрическое реле приводит его в работу, а оно, в свою очередь, размыкает подвижные контакты отключая электрическую цепь.

Проверка работоспособности УЗО осуществляется нажатием кнопки «ТЕСТ». Нажатие данной кнопки искусственно создает в УЗО утечку тока, что должно привести к отключению УЗО.

  1. Схема подключения УЗО.

ВАЖНО! Так как в УЗО отсутствует защита от сверхтоков, при любой схеме его подключения должна быть предусмотрена так же установка , для защиты УЗО от токов перегрузки и короткого замыкания.

Подключение УЗО осуществляется по одной из следующих схем, в зависимости от типа сети:

Подключение УЗО без заземления:

Такая схема применяется, как правило, в зданиях со старой электропроводкой (двухпроводной), в который отсутствует заземляющий провод.

Подключение УЗО с заземлением:

N- C- S (когда нулевой проводник разделяется на нулевой рабочий и нулевой защитный):

Схема подключения УЗО в электросети (когда нулевой рабочий и нулевой защитный проводники разделены):

ВАЖНО! В зоне действия УЗО нельзя объединять нулевой защитный (провод заземления) и нулевой рабочий проводники! Другими словами нельзя в схеме, после установленного УЗО, соединять между собой рабочий ноль (синий провод на схеме) и провод заземления (зеленый провод на схеме).

  1. Ошибки в схемах подключения из-за которых выбивает УЗО.

Как было сказано выше УЗО срабатывает на токи утечки, т.е. если сработало УЗО — это значит, что произошло попадание человека под напряжение или по какой либо причине оказалась повреждена изоляция электропроводки или электрооборудования.

Но что если УЗО самопроизвольно срабатывает и при этом повреждений нигде нет, а подключенное электрооборудование исправно? Возможно все дело в одной из следующих ошибок в схеме сети защищаемой УЗО.

Одной из самых распространенных ошибок является объединение нулевого защитного и нулевого рабочего проводника в зоне действия УЗО:

В этом случае величина тока выходящего из сети через УЗО по фазному проводу будет больше чем величина тока возвращающегося в сеть по нулевому проводнику т.к. часть тока будет протекать мимо УЗО по проводнику заземления, что приведет к срабатыванию УЗО.

Так же, часто встречаются случаи использования в качестве нулевого рабочего проводника проводник заземления или стороннюю проводящую заземленную часть (например арматуру здания, систему отопления, водопроводную трубу). Такое, подключение как правило происходит при повреждении нулевого рабочего проводника:

Оба этих случая приводят к тому, что УЗО выбивает, т.к. ток выходящий из сети по фазному проводу ток через УЗО не возвращается обратно в сеть.

  1. Как выбрать УЗО? Типы и характеристики УЗО.

Что бы правильно подобрать УЗО и исключить возможность ошибки воспользуйтесь нашим .

УЗО выбирается по его основным характеристикам. К ним относятся:

  1. Номинальный ток — максимальный ток при котором УЗО способно длительно работать не теряя свою работоспособность;
  2. Дифференциальный ток — минимальный ток утечки при котором УЗО произведет отключение электрической цепи;
  3. Номинальное напряжение — напряжение при котором УЗО способно длительно работать не теряя свою работоспособность
  4. Тип тока —постоянный (обозначается «-«) или переменный (обозначается «~»);
  5. Условный ток короткого замыкания — ток который кратковременно может выдержать УЗО до момента пока не сработает защитная аппаратура (предохранитель или автоматический выключатель).

Выбор УЗО основывается на следующих критериях:

— По номинальному напряжению и типу сети: Номинальное напряжение УЗО должно быть больше либо равно номинальному напряжению защищаемой им цепи:

U ном. УЗО U ном. сети

При однофазной сети требуется двухполюсное УЗО , при трехфазной сети четырехполюсное .

— По номинальному току: согласно пункта 7.1.76. ПУЭ использование УЗО в групповых линиях, не имеющих защиты от , без дополнительного аппарата, обеспечивающего эту защиту не допускается, при этом необходима расчетная проверка УЗО в режимах сверхтока с учетом защитных характеристик вышестоящего аппарата, обеспечивающего защиту от сверхтока.

Из сказанного выше следует, что перед УЗО должен стоять аппарат защиты ( или ) именно по току этого вышестоящего аппарата защиты необходимо выбирать номинальный ток УЗО исходя из условия, что номинальный ток УЗО должен быть больше либо равен номинальному току установленного до него аппарата защиты:

I ном. УЗО ⩾ I ном. аппарата защиты

При этом рекомендуется что бы номинальный ток УЗО был на ступень больше номинального тока вышестоящего аппарата защиты (например если перед УЗО установлен автомат на 25 Ампер УЗО рекомендуется ставить с номинальным током 32 Ампера)

Справочно — стандартные значения номинальных токов УЗО: 4А, 5А, 6А, 8А, 10А, 13А, 16А, 20А, 25А, 32А, 40А, 50А, 63А и т.д.,

— По дифференциальному току:

Дифференциальный ток — это одна из главных характеристик УЗО которая показывает при какой величине тока утечки УЗО отключит цепь.

В соответствии с пунктом 7.1.83. ПУЭ: Суммарный ток утечки сети с учетом присоединяемых стационарных и переносных электроприемников в нормальном режиме работы не должен превосходить 1/3 номинального тока УЗО. При отсутствии данных ток утечки электроприемников следует принимать из расчета 0,4 мА на 1 А тока нагрузки, а ток утечки сети - из расчета 10 мкА на 1 м длины фазного проводника. Т.е. дифференциальный ток сети можно рассчитать по следующей формуле:

Δ I сети =((0.4*I сети)+(0.01*L провода))*3, миллиАмпер

где: I сети — ток сети (рассчитанный по формуле выше), в Амперах; L провода — общая длина проводки защищаемой электросети в метрах.

Рассчитав Δ I сети принимаем ближайшее большее стандартное значение дифференциального тока УЗО Δ I УЗО :

Δ I УЗО ⩾ Δ I сети

Стандартными величинами дифференциального тока УЗО являются : 6, 10, 30, 100, 300, 500мА

Дифференциальные токи: 100, 300 и 500мА применяются для защиты от пожаров, а токи: 6, 10, 30мА — для защиты от поражения человека электрическим током. При этом токи 6 и 10мА применяются, как правило, для защиты отдельных потребителей и , а дифференциальный ток 30мА подходит для общей защиты электросети.

В случае если УЗО необходимо для защиты от поражения электрическим током, а по произведенному расчету ток утечки составил более 30мА необходимо предусмотреть установку нескольких УЗО на разные группы линий, например одно УЗО для защиты розеток в комнатах, а второе для защиты розеток в кухне, снизив тем самым мощность проходящую через каждое УЗО и как следствие снизив ток утечки сети, т.е. в таком случае расчет необходимо будет производить для двух или более УЗО которые будут установлены на разные линии.

— По типу УЗО:

УЗО бывают двух типов: электромеханическое и электронное . Принцип работы электромеханического УЗО мы рассматривали выше, его основным рабочим органом является дифференциальный трансформатор (магнитопровод с обмоткой) который сравнивает величины уходящего в сеть тока и тока возвращающегося из сети, а в электронном эту функцию выполняет электронная плата для работы которой необходимо напряжение.

10
Поделиться: